F.E. (Se m-II) (All Branches) (CBSGS)

Paper / Subject Code: 29602 / Applied Physics - II.

Time: 2Hours

Marks: 60
N. B. 1) Question no 1 is compulsory
2) Attempt any three questions from remaining three questions.
3) Assume suitable data wherever required
4) Figures on the right indicates marks

1 Attempt any five
a In Newton's ring experiment the diameter of $5^{\text {th }}$ dark ring is 0.5 cm , calculate the diameter of $20^{\text {th }}$ dark ring.
b What is meant by absent spectra? Write the condition of absent spectra.
c A fiber cable has an acceptance angle of 30° and a core refractive index is 1.4. Calculate the refractive index of cladding.
d What is resonance cavity? Explain its importance in Lasers.
e What is the wave function of mater wave? Explain its physical significance
f How do you measure phase difference between two A.C. signals by CRO?
g Define superconductivity and explain the statement, "Diamagnetism is the test of superconductivity".
2 a For Newton's ring, prove that diameter of nth dark ring is directly proportional to the square root of natural number.
If the diameter of $n^{\text {th }}$ and $(\mathrm{n}+10)^{\text {th }}$ Newton's dark ring are 4 mm and 8 mm respectively. Determine the wavelength of light used if the radius of curvature is 2 m .
b Differentiate between Step Index and graded Index optical fiber and derive an expression for numerical aperture of step index optical fiber.
3 a How is laser different than that of ordinary source of light? With neat diagram explain the construction and working of Nd-YAG Laser.
b Why are the fringes straight in the interference pattern of wedge shaped film? Derive an expression for fringe width.
4 a What is grating element? A monochromatic light of wavelength $5 \times 10^{-5} \mathrm{~cm}$ falls normally on a grating of 2 cm wide. The first order maxima is produced at 18^{0} from the normal. What are the total number of lines on the grating?
b What is Heisenberg's uncertainty principle? Prove it using single slit electron diffraction.
c What are critical temperature and critical magnetic field of superconducting material? The transition temperature for Pb is 7.2 k . At 5 k it losses the superconducting property if subjected to magnetic field of $4 \times 10^{4} \mathrm{~A} / \mathrm{m}$. Find the critical magnetic field at 0 k .
5 a For plane transmission grating, prove that the condition of diffraction maximum is $\mathrm{d} \sin \Theta=\mathrm{n} \lambda, \mathrm{n}=0,1,2,3$.
b Derive one dimensional time independent Schrodinger wave equation. 5
c With neat diagram, explain the construction and working of electron microscope. 5
6 a An electron has momentum of $5 \times 10^{-14} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$ with an accuracy of 0.05%. Find the 5 minimum uncertainty in the location of electron.
b With neat diagram explain the construction and working of Cathode Ray Tube.
c What are Nano materials? Explain one of the method of its production in detail.

