1 ime: 3 nour	Max. Marks: 80	
Note: 1. Question No.1 is compulsory.		
2. Attempt any three from the remaining questions.		
3. Assume suitable data if applicable.4. Figures on the right hand side indicate full marks.		
Q1. Solve any four.	- 4	
a) Draw one port oscillator circuit. Find value of R _L which maximizes Oscillator power.	5,3	
b) Explain phase noise and its effect on oscillator design.	5	
c) What is the image frequency in mixer? How to get rid of it?	5	
d) What is shielding?	5	
e) Explain scaling and conversion w. r. t. IL method of filter designing.	5	
Q2 A) Design the Butterworth high pass filter having cut-off frequency of 250 And -15 dB response at 200 MHz.	MHz 10	
B) Give the significance of each section in Image parameter method of filt Design.	er 10	
Q3 A) Explain various methods of grounding.	10	
B) List and explain the power amplifier performance parameters.	10	
Q4 A) Silicon bipolar junction transistor has the following scattering parameter $S_{11}=0.38 \sqcup -1580^0$, $S_{12}=0.11 \sqcup 54^0$, $S_{21}=3.5 \sqcup 80^0$, $S_{22}=0.40 \sqcup 1580^0$. The source impedance $Z_S=25\Omega$ and load impedance $Z_L=40\Omega$. Comp	430	
Power gain, the overall power gain and transducer power gain.		
B) GaN HEMT has the following scattering parameters at 1.9 GHz (Zo = 5.000 S11 = $0.869 \bot -1590^{\circ}$, S12 = $0.031 \bot -9^{\circ}$, S21 = $4.25 \bot 61^{\circ}$, S22 = 0.507	50Ω) 10 7 \bot -117 0	
Determine the stability of circle using $K-\Delta$ test and plot stability circles		
Q5 A) Design a transistor oscillator at 4 GHz using GaAs MSFET in a commo Configuration with 5 nH inductor in series with gate. $S_{11} = 0.72 \text{L} - 116^0, S_{12} = 0.03 \text{L} 57^0, S_{21} = 2.6 \text{L} 76^0, S_{22} = 0.73 \text{L} -54^0$ $Z_0 = 50 \Omega.$	on gate 10	
B) Derive and explain balanced diode mixer.	10	
Q6 A) What are the sources of EMI and its effect on EMI	10	
B) What is the need for EMC standards? Explain CISPR standards for EM		

N	81	82	83	84	85	86	87	88	89	810	811
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Dedham, Mass.: Artech House, 1980) with permission.

Table: Element values for maximally flat low pass filter $g_0 = 1, \omega_c = 1, N = 1$ to 10
