03:00 pm - 06:00 pm ## Principle of Communications Q.P. Code: 24574 | Time: 3 Hours | Marks: 80 | |---|---| | N.B (1) Question No. 1 is compulsory | | | (2) Out of remaining questions attempt three | | | (3) Figures to right indicate full marks. | | | Q1 Solve any four | | | a) Compare ground wave & sky wave propagation b) Define modulation & explain any two need of modulation c) State in brief different types of noise. d) With reference to receiver define sensitivity, selectivity, fidelity and image frequency rejection e) Draw BASK & BFSK signal for 10111010. | (5)
(5)
(5)
(5)
(5) | | Q2 a) Explain with neat diagram Indirect method of FM generation | (10) | | b) Prove Friss formula with reference to noise factor in cascade. | (10) | | Q3 a) What is multiplexing in communication system? Explain in brief transmitter | 100 | | and receiver of FDM. | (10) | | b) A sinusoidal carrier has an amplitude of 20 V & frequency of 200 Khz. It is an by a sinusoidal voltage of amplitude 6 V & frequency 1 Khz. Modulated v across a 80 Ω resistance 1. Write the equation of modulated wave 2. De index 3. Draw the spectrum of modulated wave & 4. Calculate total average Q4 a) Explain generation & demodulation of PWM. b) In an AM receiver the loaded Q of antenna circuit at the input to mixer is 2. | voltage is developed termine modulation power. (10) (8) | | Calculate image frequency & its rejection at 1 MHz. | | | c) State in brief different types of communication channel | (8)
(4) | | Q5 a) Explain delta modulator transmitter & receiver with neat block diagram | (10) | | b) State & prove following properties of Fourier transform. | (=5) | | (i) Time shifting (ii) convolution in time domain | (10) | | Q6 Write short notes (Any Four) | (20) | | Sampling theorem Frequency spectrum allocation Tropospheric scatter propagation Inter symbol interference Noise figure & noise factor | |