Time: 3 Hours Max Marks: 80

5

5

- N.B. 1) Question No.1 is compulsory
 - 2) Solve any three questions from the remaining questions.
 - 3) Assume suitable data if necessary.
 - 1 Solve any four of the following.
 - (a) Explain trade-offs in analog design with the help of analog design octagon
 - (b) For a n-channel MOSFET draw- a)a basic small signal model b) small signal model 5 considering channel length modulation effect c) small signal model considering body effect
 - (c) Explain the concept of clock feed through in the MOSFET sampling circuit
 - (d) Compare performance of various op-amp topologies
 - Derive expression for input referred noise of CS stage 5
 - 2 10 (a)

Identify the above network .Derive the gain equation of the above circuit.

- (b) Derive equation of differential gain, common mode gain and CMRR of a differential 10 amplifier circuit.
- 3 (a) The following circuit uses a resistor rather than a current source to define a tail 10

current of 1mA.

Assume (W/L) $_{1,\,2}$ =25/0.5, $\mu_n C_{ox}$ =50 μ A/V², V_{TH} =0.6V, λ =0, V_{DD} =3V

- (a) What is the required input CM for which Rss sustains 0.5V?
- (b) Calculate R_D for a differential gain of 5
- (c) What happens at the output if input CM level is 50mV higher than the value calculated in (a)?
- Derive expression for voltage gain A_V and output resistance Ro of source follower 10 stage.

66578 Page 1 of 2

20

Q.4 Design two stage operational amplifiers that meet the following specifications

Av > 3000V/V $V_{DD} = 2.5V$ $V_{SS} = -2.5V$

Gain Bandwidth = 5MHz, Slew Rate $> 10V/\mu s$, 60° phase margin,

 $0.5V < V_{out}$ range < 2V,

ICMR = -1.25V to 2V,

 $P_{diss} \le 2 \text{ mW}, C_L=10 pF$

Use $K_N = 100 \mu A/V^2$, $K_P = 20 \mu A/V^2$, $V_{TN} = |V_{TP}| = 0.5 V$, $\lambda_N = 0.06 V^{-1}$,

 $\lambda_P = 0.08V^{-1}$, Cox=2.47fF/ μ m².

Verify that the designed circuit meets required voltage gain and power dissipation specifications

- 5 (a) Explain the charge injection mechanism in MOS sampling circuits and also describe the errors contributed by the above effect.
 - (b) What is a band gap reference? Describe methods of implementation of band gap references
- 6 Write short note on any four
 - (a) Necessity of Millers theorem 5
 - (b) Gilbert Cell 5
 - (c) Charge Pump PLL(d) Comparison of full custom design and semi custom design5
 - (e) Performance parameters of VCO 5

66578 Page 2 of 2