		(2 Hours)	500	[Total Marks:	: 60]
	 Att Ass 	No.1 is compulsory. tempt any three from Q.No.2 to Q.No.6. sume suitable data wherever required. cures to the right indicate maximum man			
Q1.	Answer any five from the following questions. (3 marks each)				[15]
	b.	Draw the following for a cubic unit cell. $\overline{1}$ $\overline{2}$ Show that the Fermi energy level lies at the semiconductors. The mobility of hole is $0.025 \text{m}^2/\text{V.s.}$ What w its Hall coefficient is $2.25 \text{x} 10^{-5} \text{m}^3/\text{C}$?	centre of the band gap i		
	d. e. f.	Explain de Broglie's hypothesis of matter was Explain reverberation of sound. Explain Meissner Effect with the help of diag		ression for λ .	
	g.	Discuss any three applications of Ultrasonic	waves.		
Q2.	a.	Derive Bragg's equation for X-ray diffraction a plane (1 0 0) of rock salt having lattice co Bragg's diffraction maximum for X-rays of w	nstant 2.814A° correspo vavelength 1.541A°.	nding to first order	[8]
	D.	What is Hall Effect? Derive an expression fo determined by using Hall Effect?	r Haii Voitage. How can r	nobility be	[7]
Q3.	a. b.	Derive the relation between density and lat- the lattice constant, atomic radius and pack structure. Given density of Chromium is 5.9 Explain the formation of P-N junction in equ	cing factor for Chromium 8 gm/cc and atomic weig	having BCC ght is 50.	[8]
		explain its conduction process in forward bi	as.		[7]
Q4.	a. 7	Differentiate between Type-I & Type-II Supe	erconductors.		[5]
	~ ~	Discuss in details any three factors affecting	(A)		[5]
	C.	Calculate the de Broglie wavelength of alph difference of 150 volts. Given mass of Alpha	, ,	•	[5]
Q5.	a.	Find the accuracy in the position of an elect uncertainty of 0.01%	ron moving with speed 3	350 m/sec with	[5]
	b, c.	^_^^_Y			[5]
		and mobility of holes=0.04 m ² /V-sec.	en that mobility of electi	011 - 0.14111 / V-Sec	[5]
Q6.	a. b. c.	hort notes on the following (any three) Davisson- Germer Experiment Maglev Bragg's spectrometer Crystal defects			[15]
72375	200	Page 1 of 1			