T.E. (Computer) (Sem-I) (CB) Paper/Subject Code: 31904/Theory of Computer Science

Date-25/11/19

	(3 Hours) [Total Marks: 80]	
N.I	 3. (1)Question No. 1 is compulsory (2) Attempt any three out of remaining five questions (3) Assumptions made should be clearly stated 	
1.	 (a) Explain post correspondence problem. (b) Differentiate between FA and PDA. (c) Define Regular Expression and obtain a regular expression such that L (R) = { w w ε {0, 1} * } with at the most three zeros 	5 5 5
	(d) What is ambiguous grammar? Check whether following grammar is ambiguous or not $E \rightarrow E + E E^*E (E) id$	5
2.	 (a)Design a Finite State Machine to accept following language over the alphabet {0, 1} L (R) = { w w starts with 0 and has odd length or starts with 1 and has even length } 	10
· •	(b) Give and explain formal definition of Pumping Lemma for Regular Language and prove that following language is not regular.	10 ⁻
	$L=\{ 0^{1} i is prime number \}$	
3.	(a) Construct PDA accepting the language $L=\{a^{2n}b^n \mid n \ge 0\}$	10
	(b) Consider the following grammar	10
	$S \rightarrow i C t S i C t S e S a$	
	$C \rightarrow b$	
	For the string 'ibtaeibta' find the following:	
,	 (i) Leftmost derivation (ii) Rightmost derivation (iii) Parse tree (iv) Check if above grammar is ambiguous. 	
4.	(a) Construct PDA to check $\{wcw^{\mathbb{R}} w \{a,b\}^*\}$ where $w^{\mathbb{R}}$ is reverse of w & c is a constant	10
	(b) Convert following CFG to CNF S-> $0A0 1B1 BB$ A->C B->S A C->S C	10
5.	 (a) Convert (0+1) (10)*(0+1) into NFA with ε-moves and obtain DFA. (b) Construct Moore and Mealy Machine to convert each occurrence of 101 by 111. 	10 10
6.	Write short note on following (any 2)	20
	 (a) Chomsky Hierarchy (b) Halting Problem (c) Rice's Theorem (e) Universal Turing Machine 	

78070

21B16FC4CF1CA58890D1D90136577ED6

Correction in 1T00725 - T.E.(Computer Engineering)(SEM-V)(Choice Base) / 31904 - Theory of Computer Science

1 message

University of Mumbai <support@muapps.in> Reply-To: University of Mumbai <support@muapps.in> To: dbitexam@gmail.com

Mon, Nov 25, 2019 at 4:06 PM

A B						
University of Mumbai						
Correction in 1T00725 - T.E.(Compu Science Q.P. Code: 78070 Q.1 d Consider the following string id + id * id	uter Engineering)(SEM-V)(C	Choice Base) / 31904 - Theory	of Computer			
University of Mumbai https://muapps.in support@muapps.in						
You have received this email because you are registered with us. To unsubscribe; please reply to this mail with subject "Unsubscribe"						