University of Mumbai Examination Summer 2022

Program: Computer Engineering Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: CSC302 and Course Name: Discrete Structures & Graph Theory

Time: 2 hours 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Let the set A is $\{1, 2, 3\}$ and B is $\{2, 3, 4\}$. Then the set $A - B$ is		
Option A:	$\{1, -4\}$		
Option B:	{1, 2, 3}		
Option C:	{1}		
Option D:	{2, 3}		
2.	Let R be a relation on the set A of positive integers. Determine the property of relation R, if $(x, y) \in R$ where $R = \{(x,y) \mid xy \ge 1\}$		
Option A:	Anti symmetric		
Option B:	Transitive		
Option C:	Symmetric		
Option D:	Equivalence relation		
3.	The statement ($\sim Q \leftrightarrow R$) $\land \sim R$ is true when?		
Option A:	Q: True R: False		
Option B:	Q:True R:True		
Option C:	Q: False R:True		
Option D:	Q: False R: False		
4.	How many two-digit numbers can be made from the digits 1 to 9 if repetition is allowed?		
Option A:	9		
Option B:	18		
Option C:	81		
Option D:	99		
5.	Let P (x) denote the statement "x >5." Which of these have truth value true?		
Option A:	P(0)		
Option B:	P(1)		
Option C:	P(2)		
Option D:	P (9)		
6.	How many binary relations are there on a set S with 5 distinct elements?		
Option A:	25		
Option B:	2^{25}		

Option C:	2^{10}	
Option D:	215	
эринэ.		
7.	The inverse of function $f(x) = x^3 + 2$ is	
Option A:	$f^{-1}(y) = (y-2)^{1/2}$	
Option B:	$f^{-1}(y) = (y)^{1/3}$	
Option C:	$f^{-1}(y) = (y-2)^{1/2}$ $f^{-1}(y) = (y)^{1/3}$ $f^{-1}(y) = (y-2)^{1/3}$	
Option D:	$f^{-1}(y) = (y-2)$	
8.	When is a graph said to be bipartite?	
Option A:	If it can be divided into two independent sets A and B such that each edge connects a vertex from to A to B	
Option B:	If the graph is disconnected	
Option C:	If the graph has at least n/2 vertices whose degree is greater than n/2	
Option D:	If the graph is connected and it has odd number of vertices	
9.	An algebraic structure is called a semigroup.	
Option A.	(Q, +, *)	
Option B:	(P, *)	
Option C:	(P, *, +)	
Option D:	(+, *)	
10.	Condition for monoid is	
Option A:	(a + e)=a	
Option B:	(a*e)=(a+e)	
Option C:	a=(a*(a+e)	
Option D:	(a*e)=(e*a)=-a	

Q2 (20 Marks Each)	
A	Solve any Two 5 marks each
i.	Prove that 8 ⁿ - 3 ⁿ is a multiple of 5 by mathematical induction, n≥ 1
ii.	What is a distributed lattice? Draw the hasse diagram of D ₁₀₀₁ . Whether it is a distributive lattice? Find the inverses of all elements of D ₁₀₀₁ .
iii.	Determine the Eulerian and Hamiltonian path, if exists, in the following graphs:
В	Solve any One 10 marks each

i.	What is a transitive closure? Find the transitive closure of R using Warshall's
	algorithm where $A = \{a, b, c, d, e, f\} \& R = \{(a, b), (b, c), (c, e), (e, f), (e, b)\}$
ii.	Let $f(x) = x + 2$, $g(x) = x - 2$ and $h(x) = 3x$ for all $x \in R$. (R is the set of real number).
	Find i) $f \circ g \circ h$ ii) $h \circ g \circ f$ iii) $f \circ f \circ f$

Q3		
(20		
Marks		
Each)		
Α	Solve any Two 5 marks each	
i.	Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:	
	$R = \{(1, 1), (1,5), (2, 2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), $	
	(6,6)	
	Find the partitions of A induced by R, i.e., find the equivalence classes of R.	
ii.	Find truth table for the following expression & determine whether it is a tautology: $(^{\circ}P \land (Q \land R))v (Q \land R)v (P \land R) \leftrightarrow R$	
iii.	In an auditorium, the chairs are to be numbered with an alphabet followed by a positive integer not exceeding 60. Find the maximum no. of chairs that can be placed in the auditorium.	
В	Solve any One 10 marks each	
i.	Let $(x1 \land x2) \lor (x1 \land x3) \lor (x2 \land x3)$ be the Boolean expression. Write E $(x1, x2, x3)$ in a Disjunctive & Conjunctive Norma! Form.	
ii.	Define minimum hamming distance. Find the code words generated by the parity check matrix H given below. H= 1 0 1	
	[0 0] [

Q4 (20 Marks Each)		
A	Solve any Two	5 marks each
i.	If 5 points are taken in a square of are no more than √2 units apart.	side 2 units, show that at least 2 of them
ii.		$B^3 \rightarrow B^8$ defined by 100)= 10100100
	e(010)= 00101101 e(110) =00011166

	e(011) = 10010101 $e(111) = 00110001$
	and let d be the (8,3) maximum likelihood decoding function associated with e. How many errors can (e, d) correct?
iii.	Find the generating functions for the following sequences:
	a. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7,
	b. 6, -6, 6, -6. 6, -6,
В	Solve any One 10 marks each
i.	Define the term bijective function.
	Show that the mapping f: $R \rightarrow R$ given by i) $f(x) = 4x-3 \& ii)$ $f(x) = 4x+7$ is bijective.
ii.	Explain the following terms with suitable example:
	a) Incidence matrix
	b) Hamiltonian path
	c) Partition set
	d) Principle of inclusion & exclusion
İ	e) Commutative ring