S.E. (IT) (Sem-IV) (CB)

Paper / Subject Code: 41005 / Automat Theory

(3 Hours)
Marks:80

Note: Question No. 1 is Compulsory
Attempt any three out of the remaining five questions
Assumptions made should be clearly stated
Q. 1 Attempt any four sub-questions.
a) Construct the Finite Automata for binary umber divisible by 2
b) Design FA for decimal number divisible by 5
c) Give formal definition of Turing Machine
d) State and explain closure properties of regular languages
e) Construct DFA accepting all the strings corresponding to the Regular expression 1*01(0+11) *

Q2. a) Construct the following grammar to CNF

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{Ba} / \mathrm{aB} \tag{10}\\
& \mathrm{~A} \rightarrow \mathrm{bAA} / \mathrm{aS} / \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{aBB} / \mathrm{bS} / \mathrm{b}
\end{align*}
$$

b) Design Moore machine for binary adder.

Q3.a) Design a DFA corresponding to the regular expression $(a+b)^{*} a b a(a+b)^{*}$
b) Define CFG, obtain CGF for the following grammar
$(110+11) *(10)^{*}$
Q4.a) Design a PDA for CFL that checks the well formedness of parenthesis ie. the language L of all balanced string of two types of parenthesis "()" and "[]". Trace the sequence of moves made corresponding to input string $[()(())]$.
b) Construct a TM for 2's complement of a binary number. Simulate it for 1010

Q5. a) Let G be the grammar. Find the leftmost derivation, rightmost derivation and parse
tree for the string 001222.

$$
\begin{align*}
\mathrm{G}: \mathrm{S} & \rightarrow 0 \mathrm{~S}|1 \mathrm{~A}| 2 \mathrm{~B} \mid \varepsilon \tag{10}\\
\mathrm{A} & \rightarrow 1 \mathrm{~A}|2 \mathrm{~B}| \varepsilon \\
\mathrm{B} & \rightarrow 2 \mathrm{~B} \mid \varepsilon
\end{align*}
$$

b) Consider the $\mathrm{CFGS} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \mathrm{SS} \mid \varepsilon$, consider the string babbabaaaababb . prove that given grammar is ambiguous by generating more than one parse tree for a given string (10)

Paper / Subject Code: 41005 / Automata Theory

Q6. Write short notes on
a) Applications of Automata Theory
b) Chomsky Hierarchy
c) Power and limitations of PDA
d) Halting Problem.

