Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effectm 2020-2021)

Semester III

Course	Course Name	Tea (Co	ching Sontact H	cheme ours)	Credits Assigned			
couc		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ECC301	Engineering Mathematics- III	3		1*	3		1	4
ECC302	Electronic Devices & Circuits	3			3			3
ECC303	Digital System Design	3			3			3
ECC304	Network Theory	3		1	3		1	4
ECC305	Electronic Instrumentation & Control Systems	3			3			3
ECL301	Electronic Devices & Circuits Lab		2			1		1
ECL302	Digital System Design Lab		2			1		1
ECL303	Electronic Instrumentation & Control Systems Lab		2			1		1
ECL304	Skill Lab: C++ and Java Programming		4			2		2
ECM301	Mini Project 1A		4\$			2		2
	Total	15	14	2	15	07	2	24

* Should be conducted batch wise.

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week

		Examination Scheme									
				Theor	у						
Course Code	Course Name	Inter	nal Ass	essme	nt _{End}	Exam.	Term	Pract. & oral	Total		
		Test 1	Test 2	Avg.	Sem. Exam	Duratio (in Hrs	n Work				
ECC301	Engineering Mathematics-III	20	20	20	80	3	25		125		
ECC302	Electronic Devices & Circuits	20	20	20	80	3			100		
ECC303	Digital System Design	20	20	20	80	3			100		
ECC304	Network Theory	20	20	20	80	3	25		125		
ECC305	Electronic Instrumentation & Control Systems	20	20	20	80	3			100		
ECL301	Electronic Devices & Circuits Lab						25	25	50		
ECL302	Digital System Design Lab						25		25		
ECL303	Electronic Instrumentation & Control Systems Lab						25		25		
ECL304	Skill Lab: C++ and Java Programming						25	25	50		
ECM301	Mini Project 1A						25	25	50		
Total				100	400		175	75	750		

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
ECC301	Engineering Mathematics-III	03	-	01*	03	-	01	04	

Course Code	Course Name	Examination Scheme									
		Internal	Theor Assessn	End Sem	Exam Dura- tion	Term Work	Pract & Oral	Total			
		Test1	Test2	Avg of Test 1 & 2	Exam	(in Hrs.)					
ECC301	Engineering Mathematics-III	20	20	20	80	03	25	-	125		

* Should be conducted batch wise.

Pre-requisite:

- 1. FEC101-Engineering Mathematics-I
- 2. FEC201-Engineering Mathematics-II
- 3. Scalar and Vector Product: Scalar and vector product of three and four vectors

Course Objectives: The course is aimed

- 1. To learn the Laplace Transform, Inverse Laplace Transform of various functions and its applications.
- 2. To understand the concept of Fourier Series, its complex form and enhance the problem solving skill.
- 3. To understand the concept of complex variables, C-R equations, harmonic functions and its conjugate and mapping in complex plane.
- 4. To understand the basics of Linear Algebra.
- 5. To use concepts of vector calculus to analyze and model engineering problems.

Course Outcomes: After successful completion of course student will be able to:

- 1. Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.
- 2. Understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.
- 3. Expand the periodic function by using Fourier series for real life problems and complex engineering problems.
- 4. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic function.
- 5. Use matrix algebra to solve the engineering problems.
- 6. Apply the concepts of vector calculus in real life problems.

Module	Detailed Contents	Hrs.
	Module: Laplace Transform	
1.1	Definition of Laplace transform, Condition of Existence of Laplace transform.	
1.2	Laplace Transform (L) of Standard Functions like e^{at} , $sin(at)$, $cos(at)$,	
	$sinh(at), cosh(at)$ and $t^n, n \ge 0$.	
13	Properties of Laplace Transform: Linearity First Shifting theorem Second Shifting	r
01	Theorem change of scale Property multiplication by t Division by t Laplace	פ 7 בי
UT UT	Transform of dorivatives and integrals (Properties without proof)	
	Transform of derivatives and integrals (Properties without proof).	
1.4	Evaluation of integrals by using Laplace Transformation.	
	Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of	
	Periodic functions, Dirac Delta Function.	
	Module: Inverse Laplace Transform	
	2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to	
	find inverse Laplace Transform, finding Inverse Laplace transform using	
	derivatives.	
02	2.2 Partial fractions method to find inverse Laplace transform.	6
	2.3 Inverse Laplace transform using Convolution theorem (without proof).	
	Self-learning Topics: Applications to solve initial and boundary value problems	
	involving ordinary differential equations	
	Module: Fourier Series:	
	3.1 Dirichlet's conditions. Definition of Fourier series and Parseval's Identity	
	(without proof)	
	(without proof). 2.2 Equation corridge of particular function with particular and 2π and $2I$	
02	5.2 Fourier series of periodic function with period 2π and 2π .	7
03	3.3 Fourier series of even and out functions.	1
	3.4 Half range Sine and Cosine Series.	
	O ulf Learning T earing Output to fame of F earing Output to Outburger and	
	Seit-learning Topics: Complex form of Fourier Series, Orthogonal and	
-	orthonormal set of functions. Fourier Transform.	
	Module: Complex Variables:	
	4.1 Function f(z) of complex variable, limit, continuity and differentiability of	
	f(z)Analytic function, necessary and sufficient conditions for $f(z)$ to be	
	analytic (without proof).	
	4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).	
04	4.3 Milne-Thomson method to determine analytic function <i>f</i> (z)when real part	7
	(u) or Imaginary part (v) or its combination (u+v or u-v) is given.	
	4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories	
	Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio,	
	fixed points and standard transformations.	
	Module: Linear Algebra: Matrix Theory	
	5.1 Characteristic equation. Figen values and Figen vectors. Example based on	
	properties of Figen values and Figen vectors (Without Proof)	
	5.2 Cavley-Hamilton theorem (Without proof) Examples based on verification of	
	Cayley Hamilton theorem and compute inverse of Matrix	
05	E 2 Similarity of matrices. Disconsilization of matrices. Functions of equare	6
	5.3 Similarity of matrices, Diagonalization of matrices. Functions of square	
	maunx	
	Self-learning Topics: Application of Matrix Theory in machine learning and	
	google page rank algorithms, derogatory and non-derogatory matrices.	
	Module: Vector Differentiation and Integral	
90	6.1 Vector differentiation : Basics of Gradient, Divergence and Curl (Without	6
00	Proof).	0
	6.2 Properties of vector field: Solenoidal and irrotational (conservative) vector	

6.3 **Vector integral:** Line Integral, Green's theorem in a plane (Without Proof), Stokes' theorem (Without Proof) only evaluation.

Self-learning Topics: Gauss' divergence Theorem and applications of Vector calculus.

Total

39

References:

- 1. Advanced engineering mathematics, H.K. Das, S . Chand, Publications
- 2. Higher Engineering Mathematics, B. V. Ramana, Tata Mc-Graw Hill Publication
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 4. Advanced Engineering Mathematics, Wylie and Barret, Tata Mc-Graw Hill.
- 5. Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel, Schaum's Outline Series
- 6. Vector Analysis Murry R. Spiegel, Schaum's outline series, Mc-Graw Hill Publication
- 7. Beginning Linear Algebra, Seymour Lipschutz, Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

Term Work:

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1. Attendance (Theory and Tutorial	05 marks
2. Class Tutorials on entire syllabus	10 marks
3. Mini project	10 marks

Internal Assessment Test (20-Marks):

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) will be based on remaining contents (approximately 40% syllabus but excluding contents covered in Test I). Duration of each test shall be one hour.

End Semester Theory Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 subquestions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Subject Code	Subject Name	Те	aching Scho (Hrs.)	eme		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC302	Electronic Devices & Circuits	3	-		3			3	

Subject	Subject		Examination Scheme								
Code	Name		Th	neory Marks		Exam	Term	Practical	Total		
		Internal assessment		End Sem. Exam	Duration (in Hrs.)	Work	& Oral				
		Test	Test	Avg. of							
		1	2	Test 1 and							
				Test 2							
ECC302	Electronic	20	20	20	80	03			100		
	Devices &										
	Circuits										

Course pre-requisite:

FEC: 102 - Engineering Physics-I FEC: 201 - Engineering Physics-II FEC:105 - Basic Electrical Engineering

Course Objectives:

- 1. To explain functionality different electronic devices.
- 2. To perform DC and AC analysis of small signal amplifier circuits.
- 3. To analyze frequency response of small signal amplifiers.
- 4. To compare small signal and large signal amplifiers.
- 5. To explain working of differential amplifiers and it's applications in Operational Amplifiers

Course Outcomes:

- 1. Know functionality and applications of various electronic devices.
- 2. Explain working of various electronics devices with the help of V-I characteristics.
- 3. Derive expressions for performance parameters of BJT and MOSFET circuits.
- 4. Evaluate performance of Electronic circuits (BJT and MOSFET based).
- 5. Select appropriate circuit for given application.
- 6. Design electronic circuit (BJT, MOSFET based) circuits for given specifications.

Module	Unit	Topics	Hrs.
1.0	INO.	Introduction of Electronic Devices	05
	1.1	Study of pn junction diode characteristics & diode current equation. Application of zener diode as a voltage regulator.	
	1.2	Construction, working and characteristics of BJT, JFET, and E-MOSFET	
2.0		Biasing Circuits of BJTs and MOSFETs	06
	2.1	Concept of DC load line, Q point and regions of operations, Analysis and design of biasing circuits for BJT (Fixed bias & Voltage divider Bias) DC load line and region of operation for MOSFETs. Analysis and	
		design of biasing circuits for JFET (self bias and voltage divid bias), E-MOSFET (Drain to Gate bias & voltage divider bias).	er
3.0		Small Signal Amplifiers	06
	3.1	Concept of AC load line and Amplification, Small signal analys (Zi, Zo, Av and Ai) of CE amplifier using hybrid pi model.	
	3.2	Small signal analysis (Zi, Zo, Av) of CS (for EMOSFET) amplifiers.	
	3.3	Introduction to multistage amplifiers.(Concept, advantages & disadvantages)	
4.0		Frequency response of Small signal Amplifiers:	08
	4.1	Effects of coupling, bypass capacitors and parasitic capacitors on	
		frequency response of single stage amplifier, Miller effect and	
		Miller capacitance.	
	4.2	High and low frequency analysis of CE amplifier.	
	4.3	High and low frequency analysis of CS (E-MOSFET) amplifier.	
5.0		Large Signal Amplifiers:	06
	5.1	Difference between small signal & large signal amplifiers. Classification and working of Power amplifier	
	5.2	Analysis of Class A power amplifier (Series fed and transforme	er
		coupled).	
	5.3	Transformer less Amplifier: Class B power amplifier. Class AB output stage with diode biasing	
	5.4	Thermal considerations and heat sinks.	
6.0		Introduction to Differential Amplifiers	08
	6.1	E-MOSFET Differential Amplifier, DC transfer characteristics,	
	6.2	Differential and common mode gain. CMRR, differential and	
		common mode Input impedance.	
	6.3	Two transistor (E-MOSFET) constant current source	
		Total	39

Text books:

- 1. D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw Hill, 2ndEdition.
- 2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, "Microelectronic Circuits Theory and Applications," International Version, OXFORD International Students, 6thEdition
- 3. Franco, Sergio. Design with operational amplifiers and analog integrated circuits. Vol. 1988. New York: McGraw-Hill, 2002.

References:

- 1. Boylestad and Nashelesky, "Electronic Devices and Circuits Theory," Pearson Education, 11th Edition.
- 2. A. K. Maini, "Electronic Devices and Circuits," Wiley.
- 3. T. L. Floyd, "Electronic Devices," Prentice Hall, 9th Edition, 2012.
- 4. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 3rd Edition
- 5. Bell, David A. Electronic devices and circuits. Prentice-Hall of India, 1999.

NPTEL/ Swayam Course:

1. Course: Analog Electronic Circuit By Prof. Shouribrata chatterjee (IIT Delhi); <u>https://swayam.gov.in/nd1_noc20_ee89/preview</u>

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Course Code	Course Name	Tea (C	aching Sche Contact Hour	eme rs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC303	Digital System Design	03			03			03	

Course	Course				Examinat	tion Scheme	;		
Code	Name		The	ory Mar	ks	Exam	Term	Practical	Total
		Internal Assessment			End Sem.	Duration	Work	and Oral	
		Test1	Test2	Avg.	Exam.	(Hrs.)			
ECC303	Digital								
	System	20	20	20	80	03			100
	Design								

Course Pre-requisite:

FEC105 – Basic Electrical Engineering

Course Objectives:

- 1. To understand number system representations and their inter-conversions used in digital electronic circuits.
- 2. To analyze digital logic processes and to implement logical operations using various combinational logic circuits.
- 3. To analyze, design and implement logical operations using various sequential logic circuits.
- 4. To study the characteristics of memory and their classification.
- 5. To learn basic concepts in VHDL and implement combinational and sequential circuits using VHDL

Course Outcomes:

- 1. Understand types of digital logic, digital circuits and logic families.
- 2. Analyze, design and implement combinational logic circuits.
- 3. Analyze, design and implement sequential logic circuits.
- 4. Develop a digital logic and apply it to solve real life problems.
- 5. Classify different types of memories and PLDs.
- 6. Simulate and implement basic combinational and sequential circuits using VHDL/Verilog.

Module No.	Unit No.	Topics	Hrs.
1.0		Number Systems and Codes	04
	1.1	Review of Binary, Octal and Hexadecimal Number Systems, their inter-conversion, Binary code, Gray code and BCD code, Binary Arithmetic, Addition, Subtraction using 1's and 2's Complement	04
2.0		Logic Family and Logic Gates	05
	2.1	Difference between Analog and Digital signals, Logic levels, TTL and CMOS Logic families and their characteristics	03
	2.2	Digital logic gates, Universal gates, Realization using NAND and NOR gates, Boolean Algebra, De Morgan's Theorem	02
3.0		Combinational Logic Circuits	12
	3.1	SOP and POS representation, K-Map up to four variables and Quine-McClusky method for minimization of logic expressions	04
	3.2	Arithmetic Circuits: Half adder, Full adder, Half Subtractor, Full Subtractor, Carry Look ahead adder and BCD adder, Magnitude Comparator	04
	3.3	Multiplexer and De-Multiplexer: Multiplexer operations, cascading of Multiplexer, Boolean function implementation using MUX, DEMUX and basic gates, Encoder and Decoder	04
4.0		Sequential Logic Circuits	12
	4.1	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Universal Shift Register	04
	4.2	Counters: Asynchronous and Synchronous counters with State transition diagram, Up/Down, MOD N, BCD Counter	04
	4.3	Applications of Sequential Circuits: Frequency division, Ring counter, Johnson counter, Introduction to design of Moore and Mealy circuits	04
5.0		Different Types of Memories and Programmable Logic Devices	04
	5.1	Classification and Characteristics of memory, SRAM, DRAM, ROM, PROM, EPROM and Flash memories	02
	5.2	Introduction: Programmable Logic Devices (PLD), Programmable Logic Array (PLA), Programmable Array Logic (PAL)	02
6.0		Introduction to VHDL	02
	6.1	Basics of VHDL/Verilog Programming, Design and implementation of adder, subtractor, multiplexer and flip flop using VHDL/Verilog	02
		Total	39

Text Books:

- 1. John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fifth Edition (2018).
- 2. Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013).
- 3. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Forth Edition (2010).
- 4. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Fourth Edition (2016).
- 5. Volnei A. Pedroni, "Digital Electronics and Design with VHDL" Morgan Kaufmann Publisher, First Edition (2008).
- 6. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", Third Edition, MGH (2014).

Reference Books:

- 1. Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).
- 2. Mandal, "Digital Electronics Principles and Applications", McGraw Hill Education, First Edition (2010).
- 3. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss "Digital Systems Principles and Applications", Ninth Edition, PHI (2009).
- 4. Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Eight Edition (2015).
- 5. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
- 6. J. Bhasker, "A Verilog HDL Primer", Star Galaxy Press, Third Edition (1997).

NPTEL / Swayam Course:

1. Course: Digital Circuits By Prof. Santanu Chattopadhyay (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee70/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ECC304	Network Theory	03		01	03		01	04	

Course	Course			Ex	aminati	on Scheme				
Code	Name		Theo	ory Marks		Exam.	Term	Practical	Total	
		Inter	Internal assessment			Duration	Work	and Oral		
		Test 1	Test2	Avg. of	Sem.	(in Hrs)				
				Test 1 and						
				Test 2						
ECC304	Network	20	20	20	80	03	25		125	
	Theory									

Course Pre-requisite:

- 1. FEC105 Basic Electrical Engineering
- 2. FEC201 Engineerring Mathematics II

Course Objectives:

- 1. To evaluate the Circuits using network theorems.
- 2. To analyze the Circuits in time and frequency domain.
- 3. To study network Topology, network Functions and two port networks.
- 4. To synthesize passive network by various methods.

Course Outcomes:

- 1. Apply their knowledge in analyzing Circuits by using network theorems.
- 2. Apply the time and frequency method of analysis.
- 3. Evaluate circuit using graph theory.
- 4. Find the various parameters of two port network.
- 5. Apply network topology for analyzing the circuit.
- 6. Synthesize the network using passive elements.

Module	Unit	Topics	Hrs.
1 0	NO.	Electrical circuit analysis	08
1.0	1.1	Circuit Analysis: Analysis of Circuits with and without dependent sources using generalized loop and node analysis, super mesh and super node analysis technique Circuit Theorems: Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems (Use only DC source). Magnetic circuits: Concept of Self and mutual inductances.	00
		coefficient of coupling, dot convention, equivalent circuit, solution using mesh analysis (for Two Loops only).	
2.0		Graph Theory	06
	2.1	Objectives of graph theory, Linear Oriented Graphs, graph terminologies Matrix representation of a graph: Incidence matrix, Circuit matrix, Cut-set matrix, reduced Incident matrix, Tieset matrix, f-cutset matrix.	
	2.2	Relationship between sub matrices A, B & Q. KVL & KCL using matrix.	
3.0		Time and frequency domain analysis	07
3.0	3.1	Time domain analysis of R-L and R-C Circuits: Forced and natural response, initial and final values. Solution using first order and second order differential equation with step signals.	
	3.2	Frequency domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for step signal.	
4.0		Network functions	06
	4.1	Network functions for the one port and two port networks, driving point and transfer functions, Poles and Zeros of Network functions, necessary condition for driving point functions, necessary condition for transfer functions, calculation of residues by graphical methods, testing for Hurwitz polynomial.	
	4.2	Analysis of ladder & symmetrical lattice network (Up to tw nodes or loops)	0
5.0		Two port Networks	05
	5.1	Parameters: Open Circuits, short Circuit, Transmission and Hybrid parameters, relationship among parameters, conditions for reciprocity and symmetry.	
	5.2	Interconnections of Two-Port networks T & π representation.	
6.0		Synthesis of RLC circuits	07
	6.1	Positive Real Functions: Concept of positive real function, necessary and sufficient conditions for Positive real Functions.	
	6.2	Synthesis of LC, RC & RL Circuits: properties of LC, RC & RL driving point functions, LC, RC & RL network Synthesis in Cauer-I & Cauer-II, Foster-I & Foster-II forms (Up to Two Loops only). Total	39

Textbooks:

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd ed. ,1966.
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000.

Reference Books:

- 1. A. Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6th Edition.
- 2. A. Sudhakar, Shyammohan S. Palli "Circuits and Networks", Tata McGraw-Hill education.
- 3. Smarajit Ghosh "Network Theory Analysis & Synthesis", PHI learning.
- 4. K.S. Suresh Kumar, "Electric Circuit Analysis" Pearson, 2013.
- 5. D. Roy Choudhury, "Networks and Systems", New Age International, 1998.

NPTEL / Swayam Course:

1. Course: Basic Electrical Circuits By Prof. Nagendra Krishnapura (IIT Madras); https://swayam.gov.in/nd1_noc20_ee64/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Term Work (25-Marks):

At least **10 assignments** covering entire syllabus must be given during the **"Class Wise Tutorial"**. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per "**Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject	ubject Subject Name		aching Sch	eme	Credits Assigned				
Coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC305	Electronic Instrumentation & Control Systems	03			03			03	

Subject	Subject				Examinati	ion Scheme			
Code	Name		The	eory Marks		Exam		Practical	Total
		Inte	rnal ass	essment	End	Duration	Term	And Oral	
		Test1	Test1 Test2 Avg. of			(in Hrs.)	Work		
				Test 1	Exam				
				and Test					
				2					
ECC305	Electronic	20	20	20	80	03			100
	Instrumen-								
	tation								
	& Control								
	Systems								

Course pre-requisites:

1. FEC105 – Basic Electrical Engineering

Course Objectives:

- 1. To provide basic knowledge about the various sensors and transducers
- 2. To provide fundamental concepts of control system such as mathematical modeling, time response and Frequency response.
- 3. To develop concepts of stability and its assessment criteria.

Course Outcomes:

- 1. Identify various sensors, transducers and their brief performance specification.
- 2. Understand the principle of working of various transducer used to measure temperature, displacement, level, pressure and their application in industry
- 3. Determine the models of physical systems in forms suitable for use in the analysis and design of control systems.
- 4. Obtain the transfer functions for a given Control system.
- 5. Understand the analysis of systems in time domain and frequency domain.
- 6. Predict stability of given system using appropriate criteria.

Module	Unit	Topics	Hrs.
1		Principle of Measurement, Testing and Measuring instruments	04
	1.1	Introduction to Basic instruments: Components of generalized	
		measurement system Concept of accuracy, precision, linearity,	
		sensitivity, resolution, hysteresis, calibration.	
	1.2	Weasurement of Resistance: Keivin's double bridge,	
	1.2	Measurement of Inductance: Maxwell bridge and Hey bridge	
		Measurement of Capacitance: Schering bridge	
2		Sensors and Transducers	06
			-
	0.1	Basics of sensors and Transducers-Active and passive	
	2.1	Displacement and pressure. Detentiometers, pressure gauges	-
	22	Displacement and pressure- Potentiometers, pressure gauges,	
	2.2	pressure and displacement strain gauges	
		Temperature Transducers- Resistance temperature detectors	-
	2.3	(RTD). Thermistors and thermocouples, their ranges and	
		applications	
3		Introduction to control system Analysis	08
		Introduction: Open and closed loop systems, example of central	
	31	systems	
	0.1	Modelling: Modelling, Transfer function model	
	3.2		
	33	Block diagram reduction techniques and Signal flow graph	
4	0.0	Response of control system	04
		Dynamic Response: Standard test signals, transient and steady	
	4.1	state behavior of first and second order systems, steady state	
	1.0	errors in feedback control systems and their types	-
	4.2	Concept of lag and lead compensator.	
5		Stability Analysis in Time Domain	08
	5.1	Concept of stability: Routh and Hurwitz stability criterion	-
	5.2	Poot locus Analysis: Poot locus concont general rules for	-
	5.2	constructing root-locus root locus analysis of control system	
6		Stability Analysis in frequency domain	09
	6.1	Introduction: Frequency domain specification, Relationship	
		between time and frequency domain specification of system,	
		Stability margins	
	62	Stability margins and analysis using bode plot. Frequency response	
	0.2	analysis of RC. RL. RLC circuits	
	6.3	Nyquist Criterion: Concept of Polar plot and Nyquist plot. Nyquist	
		stability criterion, gain and phase margin	
		Total	39

Textbooks:

- A.K. Sawhney, "Electrical & Electronic Measurement & Instrumentation" DRS .India
- 2. B.C Nakra, K.K. Cahudhary, Instrumentation Measurement and Analysis, Tata

Mc Graw Hill.

- 3. W.D. Cooper, "Electronic Instrumentation And Measuring Techniques" PHI
- 4. Nagrath, M.Gopal, "Control System Engineering", Tata McGrawHill.
- 5. Rangan C. S., Sarma G. R. and Mani V. S. V., "*Instrumentation Devices And Systems*", Tata McGraw-Hill, 2nd Ed.,2004.
- 6. K.Ogata, "Modern Control Engineering, Pearson Education", IIIrd edition.

Reference Books:

- 1. Helfrick&Copper, "Modern Electronic Instrumentation & Measuring Techniques" – PHI
- 2. M.M.S. Anand, "Electronic Instruments and instrumentationTechnology".
- 3. Gopal M., "Control Systems Principles and Design", Tata McGraw Hill Publishing Co. Ltd.New Delhi, 1998.
- 4. Benjamin C.Kuo, "Automatic Control Systems, Eearson education", VIIthedition
- 5. Doeblin E.D., Measurement system, Tata Mc Graw Hill., 4th ed, 2003.Madan Gopal, "Control Systems *Principles and Design*", Tata McGraw hill, 7th edition,1997.
- 6. Normon, "Control System Engineering", John Wiley & sons, 3rdedition.

NPTEL/ Swayam Course:

1. Course: Control Systems By Prof. C. S. Shankar Ram (IIT Madras); https://swayam.gov.in/nd1_noc20_ee90/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total	
ECL301	Electronic Devices & Circuits Lab		2			1		1	

Subject Code	Subject Name	Exam	Examination Scheme								
				Theory Marks		Term	Practical	Total			
		Int	ternal a	ssessment	End Sem.	Work	and Oral				
		Test Test Avg. Of Test Exam									
		1	2	1 and Test 2							
ECI 201	Electronic					25	25	50			
ECLOUI	Devices										
	& Circuits										
	Lab										

Course Objectives:

- 1. To make students familiar with equipments and measuring instruments used to perform Electronics Devices and Circuits laboratory work.
- 2. To provide hands on experience to develop laboratory setup for performing given experimental using various equipments, electronic devices and measuring instruments.
- 3. To develop an ability among students to gather appropriate data and analyse the same to relate theory with practical.
- 4. To develop trouble shooting abilities among students.

Course Outcomes:

- 1. Know various equipments, electronics devices and components, and measuring instruments used to perform laboratory work.
- 2. Students will be able to explain functionality of various equipments, electronics devices and components and neasu6 instruments used to perform laboratory work.
- 3. Students will be able connect various equipments, devices, components and measuring devices using bread board as per the circuit diagram for experiment to be performed.
- 4. Students will able to perform experiment to gather appropriate data.
- 5. Students will able to analyze data obtained from experiment to relate theory with experiment results.
- 6. Students will able to prepare laboratory report (Journal) to summarise the outcome each experiment.

Laboratory plan:

Maximum of 10 practicals including minimum 2 to 3 simulations should be conducted. Suggested list of experiments:

- 1. To study of pn junction diode characteristics .
- 2. To study zener as a voltage regulator.
- **3.** To study characteristics of CE configuration.
- 4. To study BJT biasing circuits.
- 5. To study BJT as CE amplifier.
- 6. To study frequency response of CE amplifier.
- 7. To study EMOSFET biasing circuits.
- 8. Simulation experiment on study of CS amplifier.
- 9. Simulation experiment on study frequency response of CS amplifier.
- 10. Simulation experiment on study of differential amplifier.
- 11. Simulation experiment on multistage amplifier.

Term Work: At least 10 Experiments including not more than 03 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per "**Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done. The practical and oral examination will be based on entire syllabus.

Course	Course	Te (C	aching Scho Contact Hou	eme Irs)	Credits Assigned				
Coue	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL302	Digital System Design Lab		02			01		01	

Course Code	Course Name	Examination Scheme								
			Theor	ry Marks	Term	Practical	Total			
		Interna	nternal assessment End Sem. Work and							
		Test 1	Test	Avg.	Exam.					
			2							
	Digital									
ECL302	System					25		25		
	Design Lab									

Course objectives:

- 1. To get familiarise with basic building blocks of Digital System Design and verify the operation of various digital ICs.
- 2. To train students to design and implementation of combinational circuits.
- 3. To instruct students on how to design and implement sequential circuits.
- 4. To introduce simulation software like VHDL/Verilog to design basic digital circuits.

Course outcomes:

Learners will be able to ...

- 1. Identify various Digital ICs and basic building blocks of digital system design
- 2. Design and implement combinational circuits like adder, subtractor, multiplexer, code converters etc.
- 3. Identify and understand working of various types of flip flops and their inter conversions.
- 4. Design and implement basic sequential circuits such as counters, registers etc.
- 5. Acquire basic knowledge of VHDL/Verilog basic programming.

Suggested list of experiments:

- 1. Simplification of Boolean functions.
- 2. Design AND, OR, NOT, EXOR, EXNOR gates using Universal gates: NAND and NOR.
- 3. Implement digital circuits to perform Binary to Gray and Gray to Binary operations.
- 4. Implement Half adder, Full adder, Half subtractor and Full subtractor circuits.
- 5. Design and implement BCD adder using 4-bit Binary Adder IC-7483.
- 6. Implement logic equations using Multiplexer.
- 7. Verify encoder and decoder operations.

- 8. Design and implement Magnitude Comparator.
- 9. Verify truth table of different types of flip flops.
- 10. Flip flop conversions JK to D, JK to T and D to TFF.
- 11.Design asynchronous/synchronous MOD N counter using IC7490.
- 12. Verify different counter operations.
- 13.Write VHDL/Verilog simulation code for different logic gates.
- 14.Write VHDL/Verilog simulation code for combinational and sequential circuits.
- 15.Write VHDL/Verilog simulation code for 4:1 Multiplexer, 2 to 4 line binary decoder.

Term Work:

At least 08 experiments covering the entire syllabus must be given "**Batch Wise**". Out of these, **06 hardware experiments**, to be done strictly on breadboard and **at least 02 software experiments** using VHDL/Verilog. Teacher should refer the suggested list of experiments and can design additional experiments to acquire practical design skills. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per **"Credit and Grading System"** manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject	Subject Name	Те	aching Sch	Credits Assigned				
Coue		Theory	Practical	Tutorial	Theory	Pract.	Tut.	Total
ECL303	Electronic Instrumentation & Control Systems Lab.		2			1		1

Subject	Subject Name	Examination Scheme								
Code			Т	heory N	larks	Term	Practical	Total		
		Interna	l asses	sment	End Sem. Exam	WORK	& Orai			
ECL303	Electronic Instrumentation & Control Systems Lab.					25		25		

Course Objectives:

- 1. To experimentally verify the principle and characteristics of various transducers and measurement of resistance and inductance.
- 2. To make students understand the construction and the working principle of various transducers used for Displacement measurement, Temperature measurement and Level measurement.
- 3. To examine steady-state and frequency response of the Type 0, 1, and 2 systems.
- 4. To examine steady-state and frequency response of first and second order electrical systems.
- 5. To inspect stability analysis of system using Root locus, Bode plot, polar plot and Nyquist plot.

Course Outcomes:

- 1. Plot and validate the performance characteristics of transducers.
- 2. Validate the characteristics of various temperature, pressure and level transducers.
- 3. Plot frequency response of first-order electrical system.
- 4. Plot time response of second-order electrical system and calculate the steady-state error.
- 5. Validate the effect of damping factor on the response of second order system.
- 6. Inspect the frequency response specifications of systems by using bode-plot, Polar plot, Nyquist-plot techniques, and comment on the stability of system

List of experiments:

- 1. Designing DC bridge for Resistance Measurement (Quarter, Half and Full bridge)
- 2. Designing AC bridge Circuit for capacitance measurement.
- 3. Study and characteristics of Resistive Temperature Detector (RTD).
- 4. Study of Linear Variable Differential Transformer (LVDT)
- 5. To plot the effect of time constant on first-order systems response.
- 6. To plot the frequency response of first-order System
- 7. To plot the time response of second-order systems
- 8. To plot the frequency response of second-order System
- 9. To Examine Steady State Error for Type 0, 1, 2 System
- 10. To study the performance of Lead and Lag Compensator
- 11. To inspect the relative stability of systems by Root-Locus using Simulation Software.
- 12. To determine the frequency specification from Polar plot of system
- 13. To inspect the stability of system by Nyquist plot using Simulation software.
- 14. To inspect the stability of system by Bode plot using Simulation software.
- 15. Any other experiment based on syllabus which will help students to understand topic/concept.

Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per "**Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL304	Skill Lab: C++ and Java Programming		04			02		02

Course	Course		Examination Scheme								
Code	Name		Т	heory Marks							
		Inte	Internal assessment End				Dractical				
		Test	Test	Avg. Of	Sem.	Work	And Oral	Total			
		1 2 Test 1 and Exam		WORK							
				Test 2							
	Skill Lab: C++										
ECL304	and Java					25	25	50			
	Programming										

<u>Note:</u> Before performing practical 'Necessary Theory' will be taught by concern faculty

Course Pre-requisites:

1. FEL204 - C-Programming

Course Objectives:

- 1. Describe the principles of Object Oriented Programming (OOP).
- 2. To understand object-oriented concepts such as data abstraction, encapsulation, inheritance and polymorphism.
- 3. Utilize the object-oriented paradigm in program design.
- 4. To lay a foundation for advanced programming.
- 5. Develop programming insight using OOP constructs.

Course Outcomes:

- 1. Describe the basic principles of OOP.
- 2. Design and apply OOP principles for effective programming.
- 3. Develop programming applications using OOP language.
- 4. Implement different programming applications using packaging.
- 5. Analyze the strength of OOP.
- 6. Percept the Utility and applicability of OOP.

Module	Unit	Topics	Hrs.							
No.	No.									
1.0		C++ Overview	08							
	1.1	Need of Object-Oriented Programming (OOP), Object Oriented								
		Programming Paradigm, Basic								
		Concepts of Object-Oriented Programming, Benefits of OOP and C++								
	1 2	as object onemed programming language.								
	1.2	structures Arrays and	01							
		Strings Class Object class and data abstraction class scope and								
		accessing class members, separating interface from implementation.								
		ontrolling access to members.								
2.0		C++ Control Structures	08							
	2.1	Branching - If statement, If-else Statement, Decision.								
		Looping – while, do-while, for loop								
		Nested control structure- Switch statement, Continue statement, Brea	ık							
		statement.								
	2.2	Array- Concepts, Declaration, Definition, Accessing array element,								
2.0		One-dimensional and Multidimensional array.	12							
3.0	2 1	Object-Oriented Programming Using C++	12							
	3.1	Overloading Linary Operators Overloading Binary Operators Data								
		Conversion Type casting (implicit and explicit) Pitfalls of Operator								
		Overloading and Conversion. Keywords explicit and mutable.								
		Function- Function prototype, accessing function and utility function,								
		Constructors and destructors, Copy Constructor, Objects and Memory								
		equirements, Static Class members, data abstraction and information								
		hiding, inline function.								
		Constructor- Definition, Types of Constructor, Constructor Overloading,								
		Destructor.								
	3.2	Inneritance- Introduction, Types of Inneritance, Inneritance, Public and								
		Visibility Modes Public Private Protected and Friend Aggregation								
		Classes Within Classes Deriving a class from Base Class Constructor and								
		destructor in Derived Class Overriding Member Functions Class								
		Hierarchies.								
		Polymorphism- concept, relationship among objects in inheritance								
		hierarchy, Runtime & Compile Time Polymorphism, abstract classes,								
		Virtual Base Class.								
4.0		Introduction to Java	06							
	4.1	Programming paradigms- Introduction to programming paradigms,								
		Introduction to four main								
		Programming paradigms like procedural, object oriented, functional, and	2							
		logic & fulle based. Difference between C++ and love								
	12	Difference between C++ and Java.								
	7.2	(Signed vs. Unsigned								
		User Defined vs. Primitive Data Types, Explicit Pointer type), Programming								
		Language JDK Environment and Tools.								
5.0		Inheritance, Polymorphism, Encapsulation using Java	10							

	5.1	Classes and Methods: class fundamentals, declaring objects, assigning object reference variables, adding methods to a class, returning a value constructors, this keyword, garbage collection, finalize() method, overloading methods, argument passing, object as parameter, returning objects, access control, static, final, nested and inner classes, command line arguments, variable-length Arguments. String: String Class and Methods in Java. Inheritances: Member access and inheritance, super class references, Using super, multilevel hierarchy, constructor call sequence, method overriding, dynamic method dispatch, abstract classes, Object class. Packages and Interfaces: defining a package, finding packages and CLASSPATH, access protection, importing packages, interfaces (defining, implementation, nesting, applying), variables in interfaces, extending interfaces instance of aperator	g e,
6.0		Exception Handling and Applets in Java	08
	6.1	 Exception Handling: fundamental, exception types, uncaught exceptions, try, catch, throw, throws, finally, multiple catch clauses, nested try statements, built-in exceptions, custom exceptions (creating your own exception sub classes). Managing I/O: Streams, Byte Streams and Character Streams, Predefined Streams, Reading console Input, Writing Console Output, and Print Writer class. Threading: Introduction, thread life cycle, Thread States: new, runnable, Running, Blocked and terminated, Thread naming, thread join method, Daemon thread Applet: Applet Fundamental, Applet Architecture, Applet Life Cycle, Applet Skeleton, Requesting Repainting, status window, HTML Applet tag, passing parameters to Applets, Applet and Application Program. 	
		Total	52

Suggested list of Experiments:

Note: Before performing practical necessary Theory will be taught by concern faculty

Sr.No	Write C++ Program to
1	Add Two Numbers
2	Print Number Entered by User
3	Swap Two Numbers
4	Check Whether Number is Even or Odd
5	Find Largest Number Among Three Numbers
6	Create a simple class and object.
7	Create an object of a class and access class attributes
8	Create class methods
9	Create a class to read and add two distance
10	Create a class for student to get and print details of a student.
11	Demonstrate example of friend function with class
12	Implement inheritance.

Sr.	Write JAVA Program to
1	Display addition of number
2	Accept marks from user, if Marks greater than 40,declare the student as "Pass" else "Fail""
3	Accept 3 numbers from user. Compare them and declare the largest number (Using if-else statement).
4	Display sum of first 10 even numbers using do-while loop.
5	Display Multiplication table of 15 using while loop.
6	Display basic calculator using Switch Statement.
7	Display the sum of elements of arrays.
8	Accept and display the string entered and execute at least 5 different string functions on it.
9	Read and display the numbers as command line Arguments and display the addition of them
10	Define a class, describe its constructor, overload the Constructors and instantiate its object.
11	Illustrate method of overloading
12	Demonstrate Parameterized Constructor
13	Implement Multiple Inheritance using interface
14	Create thread by implementing 'runnable' interface or creating 'Thread Class.
15	Demonstrate Hello World Applet Example

Textbooks:

- 1. Bjarne Stroustrup, "The C++ Programming language", Third edition, Pearson Education.
- 2. Yashwant Kanitkar, "Let Us Java", 2nd Edition, BPB Publications.
- 3. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press, Edition: 2015
- 4. Deitel, "C++ How to Program", 4th Edition, Pearson Education.

Reference Books:

- 1. Herbert Schidt, "The Complete Reference", Tata McGraw-Hill Publishing Company Limited, Ninth Edition.
- 2. Java: How to Program, 8/e, Dietal, PHI.
- 3. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Languageser Guide", Pearson Education.
- 4. Sachin Malhotra, Saurabh Chaudhary "Programming in Java", Oxford University Press, 2010.

Skill-Enhancement:

- 1. The students should be trained to code in Eclipse (an industry accepted software tool). Also, for a given problem statement, there is need to include external library files (other than JDK files). Moreover, the students need to be trained on Maven (a build tool).
- 2. Real-life mini-problem statements from software companies (coming in for placement) to be delegated to groups of 3-4 students each and each group to work on the solution for 8-12 hours (last 2 lab sessions).

- 1. Raptor-Flowchart Simulation:http://raptor.martincarlisle.com/
- 2. Eclipse: https://eclipse.org/
- 3. Netbeans:https://netbeans.org/downloads/
- 4. CodeBlock:http://www.codeblocks.org/
- 5. J-Edit/J-Editor/Blue J

Online Repository:

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Term Work:

At least **12** experiments (**06** experiments each on **C++** and **JAVA**) covering entire syllabus should be set to have well predefined inference and conclusion. Teacher should refer the suggested experiments and can design additional experiment to maintain better understanding and quality.

The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every Experiments are graded from time to time.

The grades will be converted to marks as per "**Choice Based Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus. Students are encouraged to share their experiments codes on online repository. Practical exam should cover all **12** experiments for examination.

Course Code	Course Name	Те	aching Scho (Hrs.)	eme		Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECM301	Mini Project 1A		04\$			2		2

Course Code	Course Name	Examination Scheme								
			The	ory Marks		Term	Practical	Total		
		Inte	Internal assessment			WORK	And Oral			
		Test1	Test2	Avg. Of Test1 and Test2	Exam					
ECM301	Mini Project 1A					25	25	50		

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcome: At the end of the course learners will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.

Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.

Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.

A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.

Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.

Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.

Students shall convert the best solution into working model using various components of their domain areas and demonstrate.

The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.

With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.

However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the gualitative aspects mentioned above gets completed in odd semester, then that group can be allowed work on the extension of the Mini Project with suitable to improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project:

Term Work

The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.

In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below;

- o Marks awarded by guide/supervisor based on log book : 10
- o Marks awarded by review committee : 10
- o Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.

- First shall be for finalisation of problem
- Second shall be on finalisation of proposed solution of problem.

In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.

- ☐ First review is based on readiness of building working prototype to be conducted.
- Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

In this case in one semester students' group shall complete project in all aspects including,

- o Identification of need/problem
- o Proposed final solution
- o Procurement of components/systems
- o Building prototype and testing

Two reviews will be conducted for continuous assessment,

- First shall be for finalisation of problem and proposed solution
- Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication

In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.

In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued by the University of Mumbai.

Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.

Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

NOTE: For Electronics & Telecommunication Engineering we recommend following syllabus for Mini-Project 1A, in case it is half-year project.

Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECM301	Mini Project 1A: Analog & Digital Circuit Design based Projects		04\$			2		2

Course	Course Name			Exami	nation So	cheme			
Code			The	ory Marks		Term	Practical	Total	
		Inte	rnal asso	essment	End	Work	And Oral		
		Test1	Test2	Avg. Of Test1 and Test2	Sem. Exam				
ECM301	Mini Project 1A: Analog & Digital Circuit Design based Projects					25	25	50	

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

Course Pre-requisite:

1. FEC105 - BEE

Course Objectives:

- 1. To make students familiar with the basics of electronic devices and circuits, electrical circuits and digital systems
- 2. To familiarize the students with the designing and making of Printed circuit boards(PCB)
- 3. To improve the knowledge of electronics hardware among students

Course outcomes:

- 1. Create the electronics circuit for particular application/experiment.
- 2. Design and simulate the circuits by putting together the analog and digital components
- 3. Learn the technique of soldering and circuit implementation on general purpose printed circuit board (GPP).
- 4. Realize the PCB design process and gain up-to-date knowledge of PCB design software.
- 5. Utilize the basic electronic tools and equipment's (like DMM, CRO, DSO etc.)
- 6. Analysis of hardware fault (Fault detection and correction)

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Identification and Designing of Circuit	08
	1.1	Identification of particular application with understanding of its detail operation.	
		Study of necessary components and devices required to implement the	
		application.	
	1.2	Designing the circuit for particular application (either analog , digital, electrical ,	
		analog and digital, etc)	
2.0		Software simulation and Implementation on GPP	12
	2.1	Simulation of circuit for particular application using software's to verify the	
		expected results	-
	2.2	Implementation of verified circuit on general purpose printed circuit board	
		(GPP).	
		Now Verify the hardware results by using electronic tools and equipment's like	
2.0		millimeter, CRO, DSO etc.	
3.0		PCB design and optimization	80
	3.1	Design the circuit by placing components using PCB design software's.	
	3.2	Reduce the size of PCB by varying the position of components or devices for	
		optimize use of copper clad material	
4.0		Implementation of PCB	08
	4.1	Transfer the designed PCB on Copper clad either by using dark room or taking	
		printout on glossy paper, etc (use available suitable method).	
	4.2	Perform Etching and then Soldering.	
5.0		Detection of Hardware faults and Result verification	08
	5.1	Identify the hardware faults in designed circuit and subsequently rectify it	
	5.2	Now again verify the hardware results by using electronic tools and	
		equipment's like millimeter, CRO, DSO etc.	
6.0		Understanding the Troubleshooting	08
	6.1	Understand the trouble shooting by removing some wired connection.	
	6.2	Understand the trouble shooting of track. Troubleshoot the faculty components	
		or devices	
		Total	52

NOTE: During 1st week or within 1-month of the beginning of the semester, following topics related to ADC and DAC should be covered as theoretical concepts.

- a. Performance specifications of ADC, single ramp ADC, ADC using DAC, dual slope ADC, successive approximation ADC.
- b. Performance specifications of DAC, binary weighted resistor DAC, R/2R ladder DAC, inverted R/2R ladder DAC.

Reference books:

- 1. Schultz Mitchel E., "Grob's Basic Electronics", McGraw-Hill Education; 10 th edition, 25 October , 2006.
- 2. Charles Platt, *"Make Electronics: Learning by discovery"*, O'Reilly; ⁿ2 edition, 18 September , 2015.
- 3. Forrest M Mims III, "Getting started in Electronics", Book Renter, Inc.; 3 rd edition , 1 January 2000.

- 4. R S Khandpur, "*Printed circuit board*", McGraw-Hill Education; 1st edition, 24 February , 2005.
- 5. Kraig Mitzner, "*Complete PCB Design Using OrCAD Capture and PCB Editor*", Academic Press; 2nd edition, 20 June 2019.

Suggested Software tools:

- 1. LTspice:<u>https://www.analog.com/en/design-center/design-tools-and-</u> calculators/ltspice-simulator.html#
- 2. Eagle : <u>https://www.autodesk.in/products/eagle/overview</u>
- 3. OrCAD: <u>https://www.orcad.com/</u>
- 4. Multisim : <u>https://www.multisim.com/</u>
- 5. Webbench:<u>http://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html</u>
- 6. Tinkercad : <u>https://www.tinkercad.com/</u>

Online Repository:

- 1. https://www.electronicsforu.com
- 2. https://circuitdigest.com
- 3. https://www.electronicshub.org