## Note:

1. Question 1 is Compulsory
2. Solve any three from the remaining five questions
3. Figures to right indicate full marks
4. Assume suitable data if necessary
Question
No.
Q.1 Attempt any four

a) Compare Exact, Numerical and Experimental methods.
b) Explain $h$ and p type of meshing.
d) Differentiate between Weak and Non-weak form methods.
e) Explain Isoparametric and subparametric elements.
Q. 2 a) Compute nodal displacements, elemental stresses and strains for the truss as shown below using Finite Element Method. Take E=200 GPa

| Element | Area |
| :---: | :---: |
| 1 | $50 \mathrm{~mm}^{2}$ |
| 2 | $40 \mathrm{~mm}^{2}$ |

Max.
Marks
a) Compare Exact, Numerical and Experimental methods.
b) State and explain the principle of minimum potential energy.
c) Explain $h$ and p type of meshing.
e) Explain Isoparametric and subparametric elements.
$1 \quad 50 \mathrm{~mm}^{2}$
$2 \quad 40 \mathrm{~mm}^{2}$

b) A copper fin of diameter 20 mm , length 60 mm and thermal conductivity is $\mathrm{k}=100 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and is exposed to ambient air at $\mathrm{Ta}=30^{\circ} \mathrm{C}$ with a heat transfer coefficient $\mathrm{H}=25 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. One end of the fin is maintained at temperature $500^{\circ} \mathrm{C}$ and other end is at 200 ${ }^{\circ} \mathrm{C}$. Use RR method over general element to solve the following differential equation and obtain required EME. Take Lagrange's linear shape function and use one linear element.

$$
k A \frac{d^{2} \theta}{d x^{2}}-H p \theta=0 .
$$

$\theta=$ Temperature difference $=\mathrm{T}_{\mathrm{x}}-\mathrm{T}_{\mathrm{a}}$
$P=$ Perimeter of fin
Q. 3 a) Find the natural frequencies of longitudinal vibrations of the constrained stepped shaft of areas $A$ and 2 A and of equal lengths (L), as shown below. Use consistent and lumped mass matrix approach. ( $\mathrm{A}=1 \mathrm{~m}^{2}, \mathrm{~L}=1 \mathrm{~m}$ and Density $=7800 \mathrm{Kg} / \mathrm{m}^{3}$ ).

b) Find using FEA the deflection and slopes at nodes and reactions at supports for the beam as shown in figure. Take EI $=5000 \mathrm{KN}-\mathrm{m}^{2}$.

Q. 4 a) A CST element has nodal coordinates $(10,10),(70,35)$ and $(75,25)$ for nodes 1,2 and 3 respectively. The element is 2 mm thick and is of material with the properties $\mathrm{E}=70 \mathrm{GPa}$. Poission's ratio is 0.3 . After applying the load to the element the nodal deformation were found to be $\mathrm{u}_{1}=0.01 \mathrm{~mm}, \mathrm{v}_{1}=0.04 \mathrm{~mm}, \mathrm{u}_{2}=0.03 \mathrm{~mm}, \mathrm{v}_{2}=0.02 \mathrm{~mm}$,
$\mathrm{u}_{3}=-0.02 \mathrm{~mm}, \mathrm{v}_{3}=-0.04 \mathrm{~mm}$. Determine the strains $\mathrm{e}_{\mathrm{x}}, \mathrm{e}_{\mathrm{y}}, \mathrm{e}_{\mathrm{xy}}$ and corresponding element suresses.
b)
i) Explain patch test in FEA.
ii) Explain the sources of errors in FEA.
Q. 5 a) What is serendipity element? Derive the shape function for four noded rectangular element using NCS.
b) Find the heat transfer per unit area through the composite wall as shown in figure below.

Q. 6 a) Solve the following differential equation using Galerkin and 10 Subdomain Method

$$
-\frac{d}{d x}\left[(x-1) \frac{d u}{d x}\right]=x^{2} ; 3 \leq x \leq 5
$$

Boundary condition; $u(5)=10$ and $(d u / d x)(3)=5$. Compare the answers with exact solution at $x=4$.
b) The nodal coordinate of the triangular element for ground water simulation is as shown in figure. The nodal values of hydraulic heads $(\phi)$ at the nodes are $(4.5,2.3,4)$ respectively. Find the value of the hydrauinc head at point $P$.


