Time: 3 Hrs Marks: 80

N.B.: (1) Question No. 1 is **Compulsory**.

- (2) Attempt any **three** questions out of the remaining **five**.
- (3) Each question carries 20 marks and sub-question carry equal marks.
- (4) Assume suitable data if required

Q.1			(20)
	a)	What are the essential components of a robotic system? State the main	5
		functions of each of the components.	
	b)	Define kinematic parameters. Explain them with neat sketches.	5
	c)	Discuss control problems for the manipulator.	5
	d)	Explain briefly the following terms i) Dextrous Workspace, ii) reachable	5
		Workspace, iii) Sensor Noise, iv) Sensor Aliasing.	

Q.2 a) Consider the two axes planer articulate robot as shown in figure Compute by trigonometry. Coordinate position p(x,y) of the end P of the arm in terms of a1,a2, Θ_1 , Θ_2 .

- b) Derive equation of motion of planer 2R manipulator using Lagrangian Formulation.
- Q.3 a) State and explain different challenges in mobile robot localization.
 b) A frame {B} is described as initially coincident with {A}. We then rotate {B} about the vector ^A κ = [0.707 0.707 0.0]^T (passing through the point ^AP=[1.0 2.0 3.0]) by an amount Θ = 30 degrees. Give the frame description of {B}
- Q.4 a) Write Short note on concept of Collision Avoidance
 b) Write short note on applications of Humanoids.
 c) Discuss different Linear control Schemes for robotic manipulator.
 10

16429

Paper / Subject Code: 42478 / ROBOTICS (DLOC - IV)

Q.5	a)	In a Stanford Arm Manipulator 6 DOF robot, the second joint is to move	-10
		from an initial position of 20 degrees to final position of 68 degrees in 4	
		seconds. Assume that the joint starts and finishes at zero velocity and find	
		cubic polynomial that satisfies this motion. Calculate the position,	
		velocity and acceleration of this joint at intervals of 1 second and show	
		their plots against time.	3
	b)	Explain Bug 1 and Bug 2 Algorithm.	10
Q.6		Solve any Two	(20)
	a)	Differentiate between Joint space technique and Cartesian space	10
		Technique for robotic Manipulator Trajectory.	
	b)	Write Short note on applications of robots for military applications.	10
	c)	Explain Denavit Hartenberg Algorithm in detail.	10
