	(3 Hours) [Total Marks	30]
N.B.	: (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five.	
	(3) All questions carry equal marks.	
	(4) Assume Suitable data, if required and state it clearly.	
		000
1	Attempt any FOUR	[20]
a	Test given system for Linearity, Causality, Stability, Memory and Time Invariant	
1	y(t) = x(2t)	
b	Explain the concept of ROC in Z tranform and Laplace Transform	
c d	Discuss the application of Signals in Control systems. Determine the relationship between CTFT and LT	
e e	Find the z-transform of $x(n) = a^n u(n)$ and sketch the RoC	
C	This the z-transform of $x(n) - a$ $u(n)$ and sketch the Roc	
2 a	$x(t) = 2, 0 \le t \le 6$	[10]
	= 0, elsewhere	9,5-41
	Sketch $x(t)$, $x(-t)$, $-x(t)$, $x(t-2)$, $x(t+3)$, $2x(t)$, $x(2t)$, $x(2t)$, $x(t) + x(-t)$ and	
	x(t) - x(t-2)	
b	Find x[n] using partial fraction method from $X(z) = 1/(1 - 1.5z^{-1} + 0.5z^{-2})$	[10]
3 a	For a LTI system, input x(t) and impulse response h(t) are given below. Find the	[10]
	output using convolution.	
	$x(t) = h(t) = A, -T \le t \le T$	
	= 0, elsewhere	
b	Find the Z Transform of $x(n) = 0.5^n u(n) + 0.8^n u(-n-1)$. Also specify ROC	[10]
4 a	find Continous time Fourier Transform of $x(t) = A$ for $-T/2 < t < T/2$	[10]
b	find continous time fourier Transform of $x(t) = \cos(2 \text{ pi } f_{ot} t)$	[10]
_		F1.03
5 a	Find the Laplace transform of $x(t) = u(t)-u(t-a)$ where $a > 0$ and sketch the RoC.	[10]
b	Find the transfer function H(z) and impulse response h[n] of a discrete time	[10]
	system with I/O relation $y[n] - 0.5y[n-1] = x[n] + 2x[n-1]$	
6 a	$x[n] = [1, 3, 1 \ \underline{2}].$ Sketch $x[n], x[n+1], x[n-1], x[-n], x[-n+2], x[-n-2], x[2n],$	[10]
U a	Underline in $x[n]$ shows origin.	[10]
h	Realize the system uisng Direct form I and II, cascase and parallel form	[10]
9	y(n)-5y(n-1)+6y(n-2)=x(n)+0.3x(n-1)	[10]