Q. P. Code: 26352

ANALOG AND DIGITAL CIRCUITS

	(3 Hours)	[Total Marks: 80
 N.B.: (1) Question No. 1 is compulsory. (2) Solve any three questions out of ren (3) Figures to right indicate full marks. (4) Assume suitable data where necessar 		
Q1. Solve any four a) State ideal and Practical Characteris b) Explain Multiplexer and Demultiplex c) Convert following decimal number to i) (128) ₁₀ ii)(73) ₁₀ d) Explain working of LCD. e) Covert D flip flop to S-R flip flop.	cer.	d Gray code
Q2. a) a) Implement following using only or	ne 8:1 Multiplexer and few ga	tes.
$F(A,B,C,D) = \sum m(0,1,3,4,5,8,$	9,10,12,15)	10
b) Explain Fixed Biasing Circuit with its st	tability factor.	10
Q3. a) Draw and Explain Instrumentation Ampli	ifier using Op-amp.	10
b) Draw circuit diagram and explain the	operation of Monostable Mul	tivibrator using
IC555. Q4. a) Minimize the following four variable	logic function using K-map a	nd design 10
by using basic gates		
$f(A,B,C,D)=\sum m (0,1,2,3,4,7,8,9,11,1)$	15)	
b) What are the different methods used to in	mprove CMRR in Differential A	Amplifier.
Explain one in brief.	50000 800000000000000000000000000000000	10
Q5. a) Design a Mod 12 asynchronous count b) Design 4-bit binary to gray code conv		10 10
Q6 Write short notes on any four a) Explain the working of a Non-ing b) Explain working of a transistor. c) Write VHDL program for NAND ga d) Explain working of Current Mirr	ate.	20 np
e) Explain block diagram of op-am	ıp.	