S.E. CJT) CSem -IV) CCBSGS) Paper / Subject Code: 39406 / INFORMATION THEORY AND CODING

Date-4/6/19

Duration: 3Hrs

Marks: 80

Instructions: (1) Question no 1 is Compulsory (2) Write any Three from Remaining (3) Assume suitable data if necessary	
1. a) Write a note on convolution code.	[4]
b) State Fermat's little theorem and its applications.	[4]
c) Define Source entropy and destination entropy.	[4]
d) Explain cyclic and Hamming codes.	[4]
e) Describe properties of prefix coding with example.	[4]
2. a) Name the source coding technique used in the following types of files and	
Classify them as lossy or lossless.	[10]
i).Zip ii).jpg iii).mpg iv).bmp v).gif	
b) For (7,4) cyclic code, find out the generator matrix if $G(D)=1+D+D^3$	[10]
3. a) Explain Diffie-Hellman algorithm. Which attack is it vulnerable to?	[10]
b) Construct Huffman code for the given symbols $\{x1,x2x8\}$ with probabilities	
$P(x) = \{0.1, 0.05, 0.04, 0.01, 0.04, 0.06, 0.3, 0.4\}$ Find coding efficiency.	[10]
4. a) Explain LZW compression algorithm with example.	[10]
b) State Chinese Remainder theorem. Using it solve for X.	
X=1 MOD 2	
X=2 MOD 3	
X= 2 MOD 5	[10]
5. a) What do you mean by symmetric key cryptography? Explain DES in detail.	[10]
b) The generator polynomial for a (7, 4) cyclic code is given by $G(D)=1+D+D^{3}$.	
Compute all systematic codewords.	[10]
6. Write short notes on	[20]
a) RSA	
b) RLE	
c) Security Goals	
d) Digital signature.	

73037	

97055B49C1701790A0814FBC5B71E014