$B \cdot E \cdot(E X T C)(S e m-V \| 1)(C B C G S)$
 Advanced Digital Signal Processing (DLOC) University of Mumbai
 Examinations Summer 2022

Time: 2 hour 30 minutes
Max. Marks: 80

Option D:	$\mu<\frac{2}{\lambda_{\max }}$
7.	In MRA resolution is employed at high frequencies
Option A:	Good, poor
Option B:	Poor, good
Option C:	Good, good
Option D:	Poor, poor
8.	If $\Phi(t)$ is the scaling function of Haar Wavelet, then $\Phi(t)$ and $\Phi(2 \mathrm{t})$ by multiplying $\Phi(2 \mathrm{t})$ by
Option A:	2
Cption B:	$1 / 2$
Option C:	$\sqrt{2}$
Option D:	$1 / \sqrt{2}$
9.	Adaptive Equalization is used to compensate
Option A:	Peak signal to noise ratio
Cption B:	Inter-symbol Interference
Option C:	Channel fading
Option D:	Noises present in the signal
10.	The forgetting facior ρ in PLS algorithm ensurcs
Option A:	Stability
Option B:	Minimum MSE
Option C:	that errors in the past get much lower weight as compared to errors in the present.
Option D:	that inputs in the past get much lower weight as compared to present inputs

$\begin{gathered} \hline \text { Q2, } \\ \text { (20 } \\ \text { Marks } \\ \text { Each) } \\ \hline \end{gathered}$	Solve any Two Questions out of Three 10 marks each
A	Design a two-stage decimator for the fcllowing specifications: $D=100$ Passband: $0 \leq F \leq 50$ Transition band: $50 \leq F \leq 55$ Input sampling rate: $10,000 \mathrm{~Hz}$ Ripple: $\delta_{1}=10^{-1}, \delta_{2}=10^{-3}$
B	Derive the relation of the output $\mathrm{y}(\mathrm{in})$ with the injut $\mathrm{x}(\mathrm{n})$ (time domain relation) for an a. Interpolator for an integer factor I b. Sampling rate convertor by a non-integer factor Aiso derive the spectrum of both
C	Prove the alias cancellation and perfect reconstruction condition for a 2 band quadrature filter bank in Haar MRA.

Q3 (20 Marks Each)	Solve any Two Questions out of Three
A	Derive LMS algorithm and explain its limitations
B	Consider an MA (1) process given below: $u(n)=v(n)-0.4 v(n-1)$
where $v(n)$ is a zero mean white process with variance $\sigma_{v}^{2}=0.7$ Obiain the parameters and Correlation matrix for an equivalent 2nd order AR process.	
C	Define Periodogram. Prove that periodogram is not a consistent estimator

Q4. (20 Marks Each)	Please delete the instruction shown in front of every sub question
A	Write short notes on (Any two)
i.	Applications of Signal Processing in Biomedical Application
ii.	Adaptive chach
iii.	Image compression equalization wavelets
B	Solve anyOne
i.	Prove Weiner Hopf equation and derive the expression for MSE and minimum value of MSE
ii.	Compare Baitlett, Welch and Blackman Tukey methods of power estimation

