Q.P. Code :23022

	[Time: Three Hours]	Marks:80]
	Please check whether you have got the right question paper. N.B: 1. Question.No.1 is compulsory. 2. Attempt any three questions from Q.2 to Q.6 3. Use of statistical table permitted. 4. Figures to the right indicate full marks.	
Q.1	a) Evaluate $\int_c \log z dz$ where C is the unit circle in the z - plane.	05
	b) Find the eigen values of the adjoint of $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$	05
	c) If the arithmetic mean of regression coefficient is p and their difference is 2q, find the correlation coefficient.	ne 05
	d) Write the dual of the following L.P.P. Maximise $Z = 2x_1 - x_2 + 4x_3$ Subject to $x_1 + 2x_2 - x_3 \le 5$ $2x_1 - x_2 + x_3 \le 6$ $x_1 + x_2 + 3x_3 \le 10$ $4x_1 + x_3 \le 12$ $x_1, x_2, x_3 \ge 0$	05
Q.2	a) Evaluate $\int_C \frac{\cot z}{z} dz$ where C is the ellipse $9x^2 + 4y^2 = 1$	06
	b) Show that $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is non- derogatory.	06
	c) If X is a normal variate with mean 10 and standard deviation 4, find i) $P(X-14 <1)$, ii) $P(5 \le X \le 18)$, iii) $P(X \le 12)$	08

06

- Q.3 a) Find the expectation of number of failures preceding the first success in an infinite series 06 of independent trials with constant probabilities p & q of success and failure respectively.
 - b) Using Simplex Method solve the following L.P.P

Maximise
$$Z = 10x_1 + x_2 + x_3$$

Subject to $x_1 + x_2 - 3x_3 \le 10$
 $4x_1 + x_2 + x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

- c) Expand $f(z) = \frac{1}{z(z+1)(z-2)}$
 - (i) Within the unit circle about the origin.
 - (ii) within the unit circle about the origin.
 (iii) with in the annulus region between the concentric circles about the origin having radii 1 and 2 respectively.
 - (iii) In the exterior of the circle with centre at the origin and radius 2.
- Q.4 a) If X is Binomial distributed with mean=2 and variance = 4/3, find the probability 06 distribution of X.
 - b) Calculate the value of rank correlation coefficient from the following data regarding score 06 of 6 students in physics & chemistry test.

- c) Is the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalisable? If so find the diagonal form and the transforming matrix.
- Q.5 a) A random sample of 50 items gives the mean 6.2 and standard deviation 10.24. Can it be 06 regarded as drawn from a normal population with mean 5.4 at 5% level of significance?

b) Evaluate
$$\int_0^\infty \frac{dx}{(x^2+a^2)^3}$$
, a>0 Using Cauchy's residue theorem.

c) Using Kuhn-Tucker condition to solve the following N.L.P.P Maximise $Z = 8x_1 + 10x_2 - x_1^2 - x_2^2$ Subject to $3x_1 + 2x_2 \le 6$ $x_1, x_2 \ge 0$

Q.P. Code:23022

08

Q.6 a) The following table gives the number of accidents in a city during a week. Find whether 06 the accidents are uniformly distributed over a week.

Day: Sun, Mon, Tue, Wed, Thu, Fri, Sat, Total. No. of accidents: 13 15 9 11 12 10 14 84

b) If two independent random samples of sizes 15 & 8 have respectively the following means and population standard deviations,

$$\overline{X_1} = 980$$
 $\overline{X_2} = 1012$ $\sigma_1 = 75$ $\sigma_2 = 80$

Test the hypothesis that $\mu_1 = \mu_2$ at 5% level of significance,

(Assume the population to be normal)

c) Using Penally (Big M) method solve the following L.P.P.

Minimise
$$Z = 2x_1 + x_2$$

Subject to $3x_1+x_2 = 3$
 $4x_1+3x_2 \ge 6$
 $x_1+2x_2 \le 3$
 $x_1, x_2 \ge 0$
