[05]

Paper / Subject Code: 42104 / Elective- II 1) Advance Algorithms

B. E. (Computer) Csem-III) (CBSGS) (P-2012

(3 Hours)

[Total Marks: 80]

N.B.: (1) Question No.1 is compulsory.

- (2) Attempt any three questions from the remaining five questions.
- (3) Make suitable assumptions wherever necessary but justify your assumptions.
- 1 a) Define the asymptotic notations used for best case, average case, and worst case [05] analysis of algorithm.
 - b) Solve the following recurrence relations using master's method
 - i. $T(n) = T(n/2) + 2^n$
 - ii. $T(n) = 4T(n/2) + n/\log n$
 - c) Explain the properties of red-black trees. [05]
 - d) Explain the Line Segment properties. [05]
- 2 a) Explain insertion and deletion algorithms in Red-Black trees with examples. [10]
 - b) Find an optimal parenthesization of a matrix chain product whose sequence of [10] dimension is {4, 1, 1, 4, 1, 1, 3}.
- 3 a) What is Binomial Heap? Explain the operations that can be carried out on Binomial [10] Heap with example.
 - b) Explain maximum bipartite matching algorithm with an example. [10]
- 4 a) Explain the relabel to front algorithm for finding maximum flow with an example. [10]
 - b) Find the shortest path from node 1 to all other nodes using Dijkstra's algorithm. [10]

5 a) Use Simplex method to solve the following objective function

[10]

Max Z = 3x1-x2,

Subject to

$$2x1+x2 \geq 2$$

$$x1+3x2 < 3$$

$$x2 \le 4$$

where $x_{1,x_{2,x_{3}} \ge 0}$

b) Explain insertion and deletion in B-tree with an example.

[10]

6 a) Discuss the Jarvis March algorithm for finding the convex hull.

[10]

b) Explain the Closest Pair of Points using divide and conquer.

[10]

68473