Paper / Subject Code: 39204 / WAVE THEORY AND PROPAGATION

S.E. (EXTC) (Sem IV) (CBSGS) (R-2012)

N. 1	B. : 1.	(3 Hours) (Total Marks). Question No. 1 is compulsory.	s : 80)
	2.	Attempt any three out of the remaining five.	
	3.	Draw neat diagrams wherever necessary.	
		Assume data, if missing, with justification.	
	5.	Figures to the right indicate full marks.	
Q1.	Att	empt ANY FOUR out of the FIVE	
	(a)	What is the importance of Maxwell's equations in Electromagnetism? Name and	[5]
		state the laws that form Maxwell's equations.	[6]
	(b)	그는 그	[5]
	(c)	"Ground Wave propagation supports vertical polarization" Comment on the	[5]
		statement, whether true or false with justification.	191
	(d)	Explain the terms : i) Ray Path and ii) Critical Frequency	[5]
	(e)	Explain Super Refraction.	
	` `		[5]
Q2.	(a)	State and prove Poynting theorem. Explain its physical significance	[10]
	(b)	State and explain Gauss' Law. List the applications of Gauss' law. Prove that the	[10]
		electric field intensity of a long positively charged wire does not depend on	լոսյ
		length of the wire but on the radial distance r of points from the wire.	
Q3	(a)	What is the significance of numerical techniques? Compare FDM, FEM and	[10]
	` ,	MOM with respect to the significant points.	լւսյ
	(b)	For normal incidence, determine the amplitudes of reflected and transmitted E	[10]
		and H at interface of two regions at $z = 0$. Given: Incident $E_i = 1.5 \times 10^{-3}$, $\varepsilon_{r1} = 8.5$,	լւսյ
		$\mu_{r1} = 1$, $\sigma_1 = 0$. Region 2 is a free space.	
Q 4	(a)	Define loss tangent. How does it classify lossless dielectrics, lossy dielectrics and	[5]
	` '	good conductors?	[5]
	(b)	A 10 GHz plane wave travelling in free space has an amplitude of $Ex = 10$	[5]
	. , , , , , , , , , , , , , , , , , , ,	V/m. Find v, λ , β , η and the amplitude and direction of H.	[5]
	(c)	Define a uniform Plane Wave. Derive the Helmholtz equation for the wave.	[10]
		in the wave.	[10]
2.5	(a)	State the boundary conditions for Electric and Magnetic fields. Explain their	[10]
		significance in electromagnetism	[10]
	(b)	Describe space wave propagation and derive relation for maximum distance	(5)
		between transmitting and receiving antenna. Assume the earth to be flat.	[5]
	(c)	Explain the working of an ink jet printer.	[5]
			[5]
26	(a)	Obtain reflection and transmission coefficient of perpendicularly polarized wave	[10]
		incident on a dielectric-dielectric boundary with oblique incidence.	[10]
	(b)	Explain the phenomenon of duct propagation	[E]
	(c)	Find the depth of penetration if for copper $\mu r = 1$, $\sigma = 58$ Mmho/m at frequencies	[5]
	(f = 60 Hz, 1 MHz and 30 GHz.	[5]
			•