Paper / Subject Code: 40501 / Applied Mathematics-IV

S.E. (Computer) (Sem-IV) (CB)

Date-4/12/19

(3 hours)

Max. Marks: 80

- **N.B.** (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks.
- Q.1 (a) Find all the basic solutions to the following problem:

Maximise
$$z = x_1 + 3x_2 + 3x_3$$

subject to $x_1 + 2x_2 + 3x_3 = 4$
 $2x_1 + 3x_2 + 5x_3 = 7$
 $x_1, x_2, x_3 \ge 0$

- (b) Evaluate $\int_{c} (z-z^2) dz$, where c is upper half of the circle |z|=1.
- (c) Ten individual are chosen at random from a population & heights are found to be 63, 63, 64, 65, 66, 69, 69, 70, 70, 71 inches. Discuss the suggestion that the height of universe is 65 inches.

(d) If
$$A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$$
, find A^{100}

- Q.2 (a) Evaluate $\int_{c} \frac{z+2}{(z-3)(z-4)} dz$, where c is the circle |z|=1
 - (b) An I.Q. test was administered to 5 persons and after they were trained. The results are given below.

	ı	II	111	IV	V
I.Q. Before training			123		125
I.Q. after training	120	118		136	121

Test whether there is any change in I.Q. after the training programme, use 1% LOS.

(c) Solve the following LPP using Simplex Method

Maximise
$$z = 4x_1 + 10x_2$$

subject to $2x_1 + x_2 \le 10$
 $2x_1 + 5x_2 \le 20$
 $2x_1 + 3x_2 \le 18$
 $x_1, x_2 \ge 0$

Q.3 (a) Find the Eigen values and Eigen vectors of the following matrix.

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

[Turn over

Paper / Subject Code: 40501 / Applied Mathematics-IV

- (b) If the height of 500 students is normally distributed with mean 68 inches and standard deviation 4 inches. Find the expected number of students having heights between 65 & 71 inches.
 - Obtain Taylor's and Laurent's expansions of $f(z) = \frac{z^2 1}{z^2 + 5z + 6}$ around z = 0
- Q.4 (a) A machine is claimed to produce nails of mean length 5 cms & standard of 0.45 cm. A random sample of 100 nails gave 5.1 as their average length. Does the performance of the machine justify the claim? Mention the level of significance you apply.
 - (b) Using the Residue theorem, Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 + 3\sin\theta}$ 06
 - (c) (i) In a certain manufacturing process 5% of the tools produced turnout to be defective. Find the probability that in a sample of 40 tools at most 2 will be defective.
 - (ii) A random variable x has the probability distribution $P(X = x) = \frac{1}{3}C X = 0.12.2 \text{ Fig. 14}$

 $P(X = x_i) = \frac{1}{8} C_X$, X = 0,1,2,3. Find the moment generating function of x

Q.5 (a) Check whether the following matrix is Derogatory or Non-Derogatory:

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(b) In an industry 200 workers employed for a specific job were classified according to their performance & training received to test independence of training received & performance. The data are summarized as follows.

Performance	Good	Not good	Total	
Trained	100	50	150	
Untrained	20	30	50	
Total	120	80	200	

Use χ^2 -test for independence at 5% level of significance & write your conclusion.

(c) Use the dual simplex method to solve the following L.P.P.

Minimise
$$z = 2x_1 + x_2$$

subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Turn over

06

04+04

06

Paper / Subject Code: 40501 / Applied Mathematics-IV

Q.6 (a) Show that the matrix A satisfies Cayley-Hamilton theorem and hence find A^{-1} .

Where $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$

06

(b) A discrete random variable has the probability density function given below

					· · · · · · · · · · · · · · · · · · ·		
X = Y	-2	-1	()		2	3 1	
1 1 1			17	·			
n(1)	0.2	L/	0.1	71/	Ω 1	$\gamma \nu$	
$P(x_i)$	V.Z	IV.	V. I	ZIX.	V. I	4N	
3 1 (7						1	

06

Find K, Mean, Variance.

(c) Using Kuhn-Tucker conditions, solve the following NLPP

Maximise
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

subject to $2x_1 + 5x_2 \le 98$
 $x_1, x_2 \ge 0$

08

-----END-----