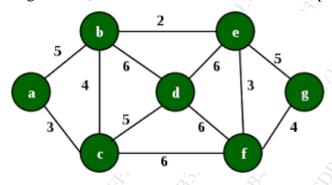
	(3 Hours)	[Marks: 80]
NΒ	.: 1) Question No. 1 is compulsory.	
	2) Answer any three out of remaining questions.	SEE S
	3) Assume suitable data if necessary.	
	4) Figures to the right indicate full marks.	
	1) Figures to the right indicate run marks.	
O1.	(a) Define graph. List types of graphs with example.	(5)
	(b) Explain asymptotic notation.	(5)
	(c) Convert given infix expression to equivalent postfix expression A+(
	(d) Define minimum spanning tree with example.	$(\mathbf{B}^{\prime}(\mathbf{C}^{\prime}\mathbf{D})/\mathbf{L})) \mathbf{(5)}$
,	(d) Bernie minimum spanning tree with example.	
Ω2	(a) What is singly linked list? Write an algorithm to perform following	operation of
Q2.	singly linked list	speration of
	Insertion Operation (From Specific Position of Linked List and	From End of
	Linked List)	Tioni End of
	2. Deletion Operation (End of Linked List)	(10)
	2. Deletion Operation (End of Enixed List)	(10)
က	(b) Write an algorithm for implementation of queue using an array.	(10)
(<u>2</u> .)	(b) write an algorithm for implementation of queue using an array.	(10)
O3 .	(a) Explain Binary Search Tree. Construct Binary Search Tree from given	ven numbers
Q 3.	45, 15, 79, 90, 10, 55, 12, 20, 50,73,50,16,61	(10)
	43, 13, 79, 90, 10, 33, 12, 20, 30,73,30,10,01	(10)
) ()3	(b) Write an algorithm for implementation of stack using an array.	(10)
ŲS.	(b) Write an algorithm for implementation of stack using an array.	(10)
04	(a) Define AVL tree. Construct AVL tree for following mentioned data	(Mantion types
Q 1 .	of rotations for each case) 21,26,30,9,4,14,28,18,15,10,2,3,7	(10)
	01 lotations for each case) 21,20,30,9,4,14,26,16,13,10,2,3,7	(10)
Ω4 .	(b) Write an algorithm for implementation of quick sort. Comment on	its timo
Q4.	Complexity.	(10)
	Complexity.	(10)
Ω5	(a) What is Collision? What are the methods to resolve collision? Expl	ain auadratic
ys.	Probing with and example.	anı quadratic (10)
	1 Toonig with and example.	(10)


Page 1 of 2

25375

Q5. (b) What is Minimum Spanning Tree? Draw the MST using Prim's and Kruskal's

Algorithm. (Find out cost of all intermediate steps)

(10)

Q6. Solve any Four:

(20)

- a) Doubly Linked List
- b) Expression Tree
- c) Merge Sort
- d) Double Ended Queue
- e) Dijkstra's Algorithm
- f) DFS and BFS

25375