NB. 1. Question No. 1 is compulsory.
2. Attempt any three out of remaining five questions.
2. Figures to right indicate full marks.
3. Assume data wherever required and state it clearly.

Q1
a) When are two events said to be independent? What is the joint probability of two independent events?
b) What is an optimum receiver and what is it optimized for?
c) Prove $\mathrm{H}_{\text {max }}=\log _{2} \mathrm{M}$.
d) Estimate Nyquist rate and Nyquist interval for the signal $10 \operatorname{Cos}(2000 \pi \mathrm{t}) \operatorname{Cos}(4000 \pi \mathrm{t})$ based on iow pass sampiing theory.
e) For impulse responses $\mathrm{g}^{1}=\{1,0,0\}, \mathrm{g}^{2}=\{0,1,0\}, \mathrm{g}^{3}=\{1,0,1\}$ design the state diagram.

Q2
a) A discrete memoryless source has an alphabet of six symbol with their probabilities as shown:

Symbol	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}
Probability	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 32$	$1 / 32$

i) Determine the Minimum Variance Huffman code-words and average code-word iength and hence find Entropy of the system,
ii) Verify the average code-word length using Shannon Fano,
iii) Compare and comment on the results of both.
b) A convoiution encoder has a constraint length of 3 and code rate of $1 / 3$. The impulses for each are $g^{1}=100 g^{2}=101 g^{3}=111$. Draw
i) encoder
ii) state diagram
iii) code transfer function

Q3
a) What is PDF? How do we get PDF from probability distribution function?
b) What is matched filter? Derive the expression for its output SNR.

Q4
a) For a systematic linear block, the three parity check digits, $\mathrm{C} 3, \mathrm{C} 2, \mathrm{C} 1$ are given by:

$$
\begin{aligned}
& \mathrm{C} 3=\mathrm{d} 1 \oplus \mathrm{~d} 2 \oplus \mathrm{~d} 3 \\
& \mathrm{C} 2=\mathrm{d} 1 \oplus \mathrm{~d} 2 \\
& \mathrm{C} 1=\mathrm{d} 1 \oplus \mathrm{~d} 3
\end{aligned}
$$

i) Find Generator matrix using which find out the code-words of 110 and 010 ,
ii) Determine the error correcting and detecting capability of system,
iii) Prepare suitable decoding table and find transmitted message for received code 101100 and 000110 .
10
b) Sketch the encoder and syndrome calculator for the generator polynomial $g(x)=1+x^{2}+x^{3}$ and obtain the syndrome for the received code-word 1101011 .

Paper / Subject Code: 32202 / Digital Communication

Q5
a) Discuss QPSK signalling. Derive the bit error probability due to PSK receiver. 10
b) Represent the given data sequence 110011010011 with help of neat waveforms in
i) Manchester format
ii) NRZ
iii) AMI-RZ
iv) $R Z$

10
Q6
Explain with the required diagrams (Any Three):
i) Compare BPSK and QPSK
ii) Modified duo-binary encoder
iii) Gram- Schmidt orthogonalization procedure
iv) Define the following terms and give their significance
(i) Systematic and Non-systematic codes (ii) Code rate

M Gmail

Correction in 1T01025-T.E.(Electronic \& Telecommunication Engineering)(SEM-V)(Ch Communication

1 message

University of Mumbai support@muapps.in
Reply-To: University of Mumbai support@muapps.in
To: dbitexam@gmail.com

University of Mumbai

Correction in 1T01025-T.E.(Electronic \& Telecommunication Engineering)(SEM-V)(Choice Base) / 32202-Digital Commun Q.P. Code: 71271
Q. 3 a) Read as

What is CDF? how do we get CDF from probability distribution function? instead of
W!hat is PDF? how do we get PDF from probability distribution function?

University of Mumbai

https://muapps.in
support@muapps.in
Mon-Fri, 10am-5pm
You have received this email because you are registered with us.
To unsubscribe; please reply to this mail with subject "Unsubscribe"

