Paper / Subject Code: 50001 / APPLIED MATHEMATICS- III

(3hours) [Total marks: 80]

- **N.B.** 1) Question No. 1 is compulsory.
 - 2) Answer any Three from remaining
 - 3) Figures to the right indicate full marks
- 1. a) Find Laplace transform of $f(t) = e^{-9t} \int_0^t u \sin 3u \, du$.
 - b) Verify Laplace equation for $u = \left(r + \frac{a^2}{r}\right) \cos \theta$.
 - c) Show that $\{\sin nx, n = 1,2,3...\}$ is a set of orthogonal function over an interval $(-\pi, \pi)$.
 - d) Evaluate $\int_0^{3+i} |z|^2 dz$ along the line 3y = x
- 2. a) Obtain two distinct Laurent's series for $f(z) = \frac{2z-3}{z^2-4z+3}$ indicating the region of convergence.
 - b) Find complex form of Fourier series of $f(x) = \cosh 2x$ in (-3,3).
 - c) Using Laplace transform, solve the differential equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1$ where y(0) = 0, y'(0) = 1
- 3. a) Solve $\frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t} = 0$ with u(0,t) = 0, u(5,t) = 0, $u(x,0) = x^2(25 x^2)$ taking h = 1 up to t = 3 seconds by Bender –Schmidt method.
 - b) Find the bilinear transformation which maps the points z = 0, -1, i into the points $w = i, 0, \infty$.
 - c) Obtain half range Cosine Series of $f(x) = \sin x$ in the interval $(0, \pi)$. Use Parseval's identity to prove that –

$$\frac{1}{1^2 \cdot 3^2} + \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} + \dots = \frac{\pi^2 - 8}{16}.$$

[TURN OVER]

57898

- 4. a) Find the orthogonal trajectory of the family of curves, $x^3y xy^3 = c$, where c is a constant.
 - 6

6

6

- b) Obtain Fourier Series of f(x) = |x| in $(-\pi, \pi)$
- c) Find the inverse Laplace transform of :-

i)
$$F(s) = \frac{1}{s(s^2+4)}$$
, using Convolution theorem, ii) $F(s) = \frac{e^{-3s}}{(s-2)^4}$.

5. a) Solve by Crank – Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$,

$$u(0,t) = u(1,t) = 0, u(x,0) = 200(x - x^2)$$

taking h = 0.25 for one-time step.

- b) Find an analytic function f(z) = u + iv, if 6 $u = e^{-x} \{ (x^2 - y^2) \cos y + 2xy \sin y \}$
- c). Obtain Fourier series of $f(x) = x^2$ in (0.2π) . Hence, deduce that 8 $\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{22} + \frac{1}{32} - \frac{1}{42} + \cdots$
- 6. a) Using Residue theorem, evaluate, $\int_{0}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$ 6

b) Find the Laplace transform of
$$f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & 1 < t < 2 \end{cases} \text{ and } f(t+2) = f(t) \qquad \text{for } t > 0.$$

c) A string is stretched and fastened to two points distance l apart. Motion is started by displacing the string in form $y = a\sin(\pi x / l)$ from which it is released at a time t=0. If the vibrations of a string is given by $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ show that the displacement of a point at a distance x from one end at time t is given by $y(x,t) = a \sin(\pi x / l) \cos(\pi ct / l).$ 8