S.E.(Mechanical) (Sem-IV) (CBSGS)

Time: $\mathbf{3}$ Hours

1) Question no.l is compulsory.
2) Attempt any three from question no. 2 to 6 .
3) Use illustrative diagrams where ever possible.

Q1 Solve any 4 out of 5 questions
a Define the following : i) Sonic Velocity ii) Stagnation Temperature 5
b A plate having an area of $0.6 \mathrm{~m}^{2}$ is sliding down the inclined plane at 30° to 5 the horizontal with a velocity of $0.36 \mathrm{~m} / \mathrm{s}^{2}$. There is a cushion of fluid 1.8 mm thick between the plate and the plane. Find the viscosity of the fluid if the weight of the plate is 280 N .
c Define i) Circulation ii) Vorticity
d Define : i) Drag Force ii) Lift Force. Write their formulae. 5
e An isosceles triangular plate of base 3 m and altitude 3 m is immersed
vertically in an oil of specific gravity 0.8 . The base of the plate coincides with the free surface of the oil. Determine i) Total pressure on the plate ii) Centre of pressure

Q2 a The velocity profile within a laminar boundary layer over a flat plate is given by

$$
\frac{u}{u}=\frac{y}{\delta}
$$

where u is the velocity at a distance y from the plate and $\mathrm{u}=\mathrm{U}$ at $\mathrm{y}=\delta, \delta$ being boundary layer thickness. Find i) Displacement thickness and ii) Momentum Thickness iii) Energy Thickness
b Derive the continuity equation in Cartesian co-ordinates.
Q3 a An oil of viscosity $0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and length 300 m . The rate of flow of fluid through the pipe is $3.5 \mathrm{lit} / \mathrm{sec}$. Find the pressure drop in length of 300 m and also the shear stress at the pipe wall.
b In a two dimensional incompressible flow. the fluid velocity components are given by $u=x-4 y$ and $v=-y-4 x$. Show that the velocity potential exists and hence derive, both, the velocity potential and the corresponding Stream function.

Q4 a Two reservoirs have a constant difference of levels of 70 m and are connected by a 250 mm diameter pipe which is 4 km long. The pipe is tapped mid-way and water is drawn at the rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. Assuming a friction factor $=0.04$ determine the rate at which water enters the lower reservoir.
b Air at a pressure of $220 \mathrm{kN} / \mathrm{m}^{2}$ and temperature of $27^{\circ} \mathrm{C}$ is moving at a velocity of $200 \mathrm{~m} / \mathrm{s}$. Calculate the stagnation pressure if
i) Compressibility is neglected ii) Compressibility is accounted for For air take $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.4$.

Paper / Subject Code: 39602 / FLUID MECHANICS

Q5 a In a pipe of diameter 300 mm the maximum velocity of flow is found to be $2 \mathrm{~m} / \mathrm{s}$. If the flow in the pipe is LAMINAR, find
i) the average velocity ii) the radius at which it occurs iii) velocity at 50 mm from the wall of the pipe.
b Starting from Navier-Stokes equation for incompressible fluid and laminar flow, derive the equation for velocity profile for Couette flow. State the assumptions made.

Q6 a An oil of dynamic viscosity 1.5 Poise and relative density 0.9 flows through a 3 cm diameter vertical pipe. Two pressure gauges are fixed 20 m apart. The gauge A fixed at the top records 200 kPa and the gauge B fixed at the bottom records 500 kPa . Find the direction of flow and the rate of flow.
b Write short notes on :
i) U tube Manometer.
ii) Boundary Layer theory.

