Paper / Subject Code: 41001 / Applied Mathematics-IV

S.E. (IT) (Sem-IV) (CBSGS)

Total Marks: 80 Hours: 3 hrs

Note: 1. Question no. 1 is compulsory.

2. Attempt any three questions out of remaining five questions.

Q1. (a) Find the remainder when 2^{50} is divided by 7.

(05)

(b) The probability distribution function of random variable X is

(05)

X	0	1	2	3	4	5	6
P(X=x)	k	3k	5k	7k	9k	11k	13k

Find P(x<4), P(3<x<6).

(c) Calculate rank correlation coefficient from the following data.

(05)

Marks in Paper I : 40, 42, 45, 35, 36, 39

Marks in Paper II : 46, 43, 44, 39, 40, 43

(d) Draw the Hasse diagram of Poset A = $\{2,3,6,12,24,36,72\}$ under the relation of divisibility. Is it Lattice?

(05)

Q2. (a) If x is a Poisson variate such that P(x=2) = 9P(x=4) + 90P(x=6) then Find mean of x. (06)

(b) Consider (3,4) parity check code . For each of the following received words determine whether an error will be detected?

(i) 0010

- (ii) 1001
- (iii) 1101 (iv) 1111

(06)

(c) (i) Using Sieve of Eratosthenes find the prime number upto 150.

(04)

(04)

(ii) What is the remainder when following sum divided by 4?

 $1^5 + 2^5 + 3^5 \dots \dots \dots \dots + 100^5$

- Q3. (a) Prove that a graph 'G' remains connected after removing an edge 'e' from 'G' iff 'e' is in some circuit of G. (06)
 - (b) Marks obtained by students in an examination follow normal distribution . If 30% of students got below 35 marks and 10% got above 60 marks, Find mean and standard deviation. (06)
 - (c) Investigate the association between the darkness of eye colour in father and son from the following data.

(08)

Colour of the Son's eyes

	Colour of the father's eye					
	Dark	Not dark	Total			
Dark	48	90	138			
Not Dark	80	782	862			
Total	128	872	1000			

7.1 64 64 4

Paper / Subject Code: 41001 / Applied Mathematics-IV

Q4. (a) Using Euclid 's Algorithm find x and y satisfying the following. $gcd(-306, 657) = 306 \times +657 y$.	(06)
 (b) Let L = {1,2,3,5,6,10,15,30} with divisibilty relation. Then show that L is a Complimented Lattice. 	(06
 (c) Give an example of a graph which has (1) Eulerian circuit but not a hamiltonian circuit. (2) Hamiltonian circuit but not an Eulerian circuit 	(08)
(3)Both (4)None of these two	
Q5. (a) Fit Binomial Distribution to the following data X: 0 1 2 3 4 Frequency: 12 66 109 59 10	(06)
(b) Nine items of a sample had the following values 45, 47, 50, 52, 48 47, 49, 53, 50 Does the mean of 9 items differ significantly from assumed population mean 47	51. 7.5?
(c) Solve $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x = 3 \pmod{7}$	(06) (08)
Q6. (a) Given $6y = 5x + 90$, $5x = 8y + 30$, $\sigma_x^2 = 16$ Find (i) \bar{x} and \bar{y} (ii) r (iii) σ_y^2	(06)
(b) Prove that set of cube root of unity is a group under multiplication of complex number.	(06)
(c) (i) Prove that $111^{333} + 333^{111}$ is divisible by 7. (ii) Find $5^{-1} \mod(23)$	(04) (04)