Paper / Subject Code: 39202 / APPLIED MATHEMATICS - IV

S.E. (EXTC) (Sem-II) (CBSGS)

(Total Marks: 80) (3 Hours)

Date-9/12/19

Question No. 1 is Compulsory. N.B.: 1)

> 2) Attempt any three from the remaining.

(05)1. Find the extremal of $\int_{-y'^2}^{x_1} \frac{1+y^2}{y'^2} dx$.

Is the following set of vectors in P_2 linearly independent? $2 - x + 4x^2$, (05) $3 + 6x + 2x^2$, $2 + 10x - 4x^2$?

Show that Eigen values of Hermitian matrix are real. (05)

Evaluate $\int (z^2 - 2\bar{z} + 1) dz$ over a closed circle $x^2 + y^2 = 2$. (05)

Find the extremal $\int_0^{\pi} (y^2 - {y'}^2 - 2y\cos x) dx$, y(0) = 0, $y(\pi/2) = 0$. (06)2.

(06)

b) Find the Eigen Values and Eigen Vectors of the matrix $A^3 + 3I$, where $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ c) Obtain all possible expansion of $f(z) = \frac{z}{(z-1)(z-2)}$ about z = -2 indicating (08)region of convergence.

(06)3. Verify Cayley - Hamilton Theorem for $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}$ and find A^{-1} .

(06)Using Cauchy's Residue Theorem evaluate $\int \frac{e^z}{z^2 + \pi^2} dz$ where C is |z| = 4.

Show that a closed curve 'C' of a given fixed length (perimeter) which encloses (08)maximum area is a circle.

Find an orthonormal basis for the subspace of R³ by applying Gram-Schmidt (06)4.

process, where $u_1 = (1,0,1,1), u_2 = (-1,0,1,1), u_3 = (0,-1,1,1).$ Find A^{20} for the matrix $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$. (06)

Reduce the Quadratic Form 2xy + 2yz + 2zx to diagonal form by orthogonal (08)reduction method.

a) Using Rayleigh-Ritz Method, find an approximate solution to the extremal problem (06)5. $\int_0^1 (y'^2 - y^2 - 2yx) dx, \quad y(0) = 0, \ y(1) = 0.$

b) Let V be a vector space containing 2×2 matrices and $W \subseteq V$ such that (06)

W = $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. Is W a subspace of V? Justify. Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is (08)diogonable.Also find transforming matrix and diagonal matrix

a) Using Cauchy's Residue Theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{13+5\sin\theta}$. (06)

b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along the curve $x=t+1, y=2t^2-1$. (06)

Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ (08)