[Time: 3 Hours]
[Marks:80]
Please check whether you have got the right question paper.
N.B: 1. Question no. 1 is compulsory.
2. Answer any three from remaining.
3. Figures to the right indicate full marks.
4. Use of statistical tables is allowed.
Q. 1 a) Find eigen values of $A^{3}-2 A^{2}+I$ and adj A
where $A=\left[\begin{array}{lll}4 & 1 & -1 \\ 6 & 3 & -5 \\ 6 & 2 & -2\end{array}\right]$
Q. 1 b) A random variable X has the following probability function.

X	0	1	2	3	4
$P(X=x)$	$\frac{1}{16}$	4 K	6 K	4 K	K

$\begin{array}{llll}\text { Find (i) } \mathrm{K} & \text { (ii) } \mathrm{P}(\mathrm{X}<4) & \text { (iii) } \mathrm{P}(\mathrm{X}>3) & \text { (iv) } \mathrm{P}(0<\mathrm{X} \leq 2)\end{array}$
Q.i c) Can it be concluded that the average life-span of an Indian is more than 71 years, if a (05) random sample of 900 Indians has an average life span 72.8 years with standard deviation of 7.2 years?
Q. 1 d) Consider the following problem:

Maximize $Z=2 x_{1}-2 x_{2}+4 x_{3}-5 x_{4}$
Subject to $\quad x_{1}+4 x_{2}-2 x_{3}+8 x_{4}=2$,

$$
\begin{aligned}
& -x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Find a basic feasible solution which is non-degerate and optimal solution.
Q. 2 a) Check whether the given matrix A is diagonalizable, diagonalize if it is,

Where $A=\left[\begin{array}{ccc}8 & 4 & 3 \\ -8 & -3 & -4 \\ -2 & -2 & 1\end{array}\right]$
Q. 2 b) Verify Green's theorem for $\overrightarrow{\mathrm{F}}=\mathrm{x}^{2} \mathrm{i}-\mathrm{xyj}$ where C is the triangle having vertices $\mathrm{A}(0,3), \mathrm{B}(3,0), \mathrm{C}(6,3)$.
Q. 2 c) Sample of two types of electric bulbs were tested for length of life and the following data were obtained,

	Type I	Type II
Sample size	10,	9
Mean of the sample (in hours)	1136	1034
Standard deviation (in hours)	36	39

Test at 5% level of significance whether the difference in the sample means is significant.
Q. 3 a) Use the dual simplex method to solve the following LPP.

Minimise $Z=6 x_{1}-x_{2}$
Subject to $2 \mathrm{x}_{1}+\mathrm{x}_{2} \geq 3$,

$$
\begin{aligned}
& x_{1}-x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Q. 3 b) Use Gauss Divergence Theorem to evaluate $\iint_{S} \bar{N} . \bar{F}$ ds where $\bar{F}=2 x i+2 y j+2 z^{2} k(06)$ and S is the closed surface bounded by the cone $x^{2}+y^{2}=z^{2}$ and the plane $z=1$.
Q. 3 c) Find the rank, index, signature and class of the following Quadratic form by reducing (08) it to its canonical form.
$2 x^{2}-2 y^{2}+2 z^{2}-2 x y-2 y z+6 z x$.
Q. 4 a) Four dice were thrown 250 times and the number of appearance of 6 each time was noted.

No. of successes (x):	0	1	2	3	4
Frequency (f):	133	69	34	11	3

Fit a poisson distribution and find the expected frequencies for $\mathrm{x}=0,1,2,3,4$.
Q. 4 b) Verify Cayley Hamilton theorem for matrix A and hence find the matrix represented by
$\mathrm{A}^{5}-4 \mathrm{~A}^{4}-7 \mathrm{~A}^{3}+11 \mathrm{~A}^{2}-\mathrm{A}-11 \mathrm{I}$
Where $A=\left[\begin{array}{ccc}3 & -2 & 3 \\ 10 & -3 & 5 \\ 5 & -4 & 7\end{array}\right]$
Q. 4 c) An investigation into the equality of standard deviation of two normal populations gave the following results.

| Sample | Size | Sample mean | Sum of squares of deviations from the mean |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 13 | 18 | 105 |
| 2 | 21 | 24 | 145 |

Examine the equality of sample variances at 5% level of significance.
(Given: $\mathrm{F}_{0.025}=2.68$ for d. o.f 12 and 20 and $\mathrm{F}_{0.025}=3.07$ for d. o.f 20 and 12)
Q. 5
a) Is matrix $A=\left[\left.\begin{array}{ccc}2 & 0 & 0 \\ -3 & 3 & -1 \\ 3 & -1 & 3\end{array} \right\rvert\,\right.$ Derogatory matrix? Find its minimal polynomial.
Q. 5 b) A vector field $\overline{\mathrm{F}}$ is given by
$\bar{F}=(y \sin z-\sin x) i+(x \sin z+2 y z) i+\left(x y \cos z+y^{2}\right) k$
Prove that \bar{F} is irrotational. Hence find its scalar potentiai function φ if $\varphi(\pi, l, o)$.
Q. 5 c) The following table gives the result of opinion pole for three vehicles A, B, C.

Test whether the age and the choice of the vehicle are independent at 5% level of significance using $\chi^{2}-$ test.

Age	Vehicle			Total
	A	B	C	
$20-35$	25	40	35	100
$35-50$	35	24	41	100
Above 50	40	36	24	100
Total	100	100	100	300

Q. 6 a) State stoke's theorem and evaluate $\int\left[\left(x^{2}+y^{2}\right) i+\left(x^{2}-y^{2}\right) j\right] . d \bar{r}$

Where C is the square in the xy -plane with vertices $(1,0),(0,1),(-1,0)$ and $(0,-1)$
Q. 6 b) Monthly salary X in an organisation is normally distributed with mean Rs. 3000 and (06) standard deviation of Rs. 250 . What should be the normally minimum salary of an employee in this organisation so that the probability that an employee to top 5% employees?
Q. 6 c) Using duality solve the following LPP,

Maximize $Z=3 x_{1}+2 x_{2}$
Subject to $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 5$

$$
\begin{aligned}
& \mathrm{x}_{1}+\mathrm{x}_{2} \leq 3 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

