Total marks:80

[3]

[3]

[3]

(3 hours)

If $\tanh x = 1/2$ then find value of x and $\sinh 2x$

If x = u - uv, y = uv - uvw, z = uvw find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$

N.B.: (1) Question **No. 1** is **compulsory.**

Q1

a)

b)

c)

(2) Attempt **any Three** from remaining.

If $u = \log(x^2 + y^2)$ Find $\frac{\partial^2 u}{\partial x \partial y}$

	d)	Using Maclaurin's series, Prove $log(1 + \sin x) = x - \frac{x^2}{2} + \frac{x^3}{6} + \cdots$	[3]
	e)	Check if the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & 1 \end{bmatrix}$ is unitary	[4]
	f)	Find n^{th} derivative of $\frac{2}{(x-1)(x-2)(x-3)}$	[4]
Q2.	a)	Solve $x^5 = 1 + i$ and find the continued product of the roots.	[6]
	b)	Reduce the matrix $A = \begin{bmatrix} 3 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ to the normal form	[6]
	c)	and find its Rank State and Prove Euler's theorem for two variables hence find value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ where $u = \frac{xy}{x+y}$	[8]
Q3	a)	Investigate for what values of λ and μ the equations $x + y + z = 6$, $x + 2y + 3z = 10$ and $x + 2y + \lambda z = \mu$ have i) No solution ii) Unique solution iii) Infinite solutions	[6]
	b)	Examine the function for its extreme values	[6]
	c)	$f(x,y) = y^2 + 4xy + 3x^2 + x^3$ If $tan(\alpha + i\beta) = sin(x + iy)$ then Prove $\frac{tan x}{tanh y} = \frac{sin 2\alpha}{sinh 2\beta}$	[8]
Q4	a)	If $x = u \cos v$, $y = u \sin v$ then Prove $\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = 1$	[6]
	b)	Prove that $log\left(\frac{sin(x+iy)}{sin(x-iy)}\right) = 2itan^{-1}(cot \ x \ tanh \ y)$	[6]
	c)	Solve by Gauss Jordan method $2x+3y+4z=1 \ , \ x+5y+z=1 \ , \ x+y+6z=5$	[8]
Q5.	a)	Prove $\cos^6 \theta - \sin^6 \theta = \frac{1}{32} [\cos 6\theta + 15\cos 2\theta]$	[6]
	b)	Evaluate $\lim_{x \to 0} \left[\frac{x - \sin x}{x^3} \right]$	[6]
	c)	If $y = \cos(m \sin^{-1} x)$ then prove that $(1 - x^2)y_{n+2} - (2n+1)x$ $y_{n+1} + (m^2 - n^2)y_n = 0$	[8]
700	(W. W.	(8) 4(3) N 70(9)	

Paper / Subject Code: 58501 / Applied Mathematics - I.

- Q6 a) Check if the following vectors $X_1 = \begin{bmatrix} 3,1,2,1 \end{bmatrix}, X_2 = \begin{bmatrix} 4,6,2,-4 \end{bmatrix}, X_3 = \begin{bmatrix} -6,0,-3,-4 \end{bmatrix}$ $X_4 = \begin{bmatrix} 1,0,2,1 \end{bmatrix} \text{ are linear dependent hence find the relation between them if any.}$
 - b) If $f\left(\frac{z}{x^3}, \frac{y}{x}\right) = 0$ then prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 3z$
 - c) Fit a second degree parabola $y = ax^2 + bx + c$ to the following data [8] x + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 y + 2 + 6 + 7 + 8 + 10 + 11 + 11 + 10 + 9