|               | (3 Hours) Total Marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| NR.           | 1) Question No. 1 is compulsory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 14.D          | 2) Attempt any three questions out of remaining five questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|               | 3) Use of design data book such as PSG, Mahadevan is allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|               | 4) Assume suitable data if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|               | 7) Assume suitable data in required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Q1            | Answer any four from the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|               | a) Explain force analysis for Helical Gear drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>(5</b> ) |
|               | b) Explain the difference between Rolling Contact and sliding contact bearing.                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>(5</b> ) |
|               | c) Compare between flat and V belts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(5</b> ) |
|               | d) What do you understand by coefficient of fluctuation of speed and coefficient of fluctuation of energy in flywheel?                                                                                                                                                                                                                                                                                                                                                                                                                     | (5)         |
|               | e) What do you understand by self-energizing and self-locking brake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(5</b> ) |
| Q2            | Design a pair of helical gears required to transmit 10 kW power from an                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (20)        |
|               | electric motor running at 1440 rpm to a machine shaft running at 500 rpm. Design should be based on strength and wear. Work out constructional details also.                                                                                                                                                                                                                                                                                                                                                                               |             |
| Q3            | A cam operates a radial, translator roller follower having following particulars: Rise of 24 mm in an angle of $90^{0}$ of cam rotation by cycloidal motion, dwell for $30^{0}$ returns in $60^{0}$ by SHM and remaining dwell to complete cycle. Speed of rotation 800 rpm, maximum pressure angle $20^{0}$ , mass of follower is 1.3 kg, minimum spring force 20 % of maximum inertia force and external resistance $500  \text{N}$ during rise and $50  \text{N}$ during return. Design the cam and roller follower along with its pin. | (20)        |
| Q4            | a) Design a pair of spur gears required to transmit 12 kW power from a pinion shaft rotating at 300 rpm with a reduction ratio of 1.5.                                                                                                                                                                                                                                                                                                                                                                                                     | (10)        |
|               | b) The radial load on a 180 <sup>o</sup> hydrodynamically lubricated journal bearing is 12 kN. Journal speed is 860 rpm. The bearing pressure is limited to 1.5 N/mm <sup>2</sup> . Select suitable fit and find bearing dimensions, oil flow rate, coefficient of friction, friction power loss and rise in temperature of oil.                                                                                                                                                                                                           | (10)        |
| Q5            | a) Design a multi-plate clutch to transmit 8.5 kW power at 960 rpm. The plates run in oil and coefficient of friction is 0.05. Axial intensity of pressure is not to exceed 0.18 N/mm <sup>2</sup> .                                                                                                                                                                                                                                                                                                                                       | (10)        |
| <u>ر</u><br>ا | b) Design open flat belt drive for a compressor running at 820 rpm, which is driven by a 22 kW motor running at 1440 rpm. Space is available for a center distance of 3 m.                                                                                                                                                                                                                                                                                                                                                                 | (10)        |

- Q6 a) A single row deep groove ball bearing is subjected to a radial force of 9 kN (10) and a thrust force of 3 kN. The shaft rotates at 1150 rpm. The expected life of bearing is 15000 hrs. The minimum acceptable diameter of the shaft is 65 mm. Select suitable bearing for this application.
  - b) A chain drive is to be used to transmit 8 kW power from an electric motor running at 1000 rpm to a machine running at 500 rpm. The service conditions involve light shock. Select a standard roller chain, specify the correct center distance between the axes of sprockets and determine actual factor of safety for selected chain.