N.B (1) Q. 1 is compulsory.

(2) Solve any three out of the remaining from Q. 2 to Q.6.
(3)Figure to right indicate full marks
(4)Use of statistical table is allowed.
Q.1.a. If λ is an Eigen value of a non-singular matrix A, prove that $\frac{|A|}{\lambda}$ is an Eigen value of adj.A
b In a Poisson distribution, $\mathrm{P}(\mathrm{x}=3)$ is $2 / 3$ of $\mathrm{P}(\mathrm{x}=4)$. Find the mean and the standard deviation
c Find the angle between the normals to the surface $\mathrm{x} y=z^{2}$, at the points $(1,4,2) \&(-3,-3,3)$
d A random sample of 50 items given the mean 6.2 and variance 10.24. Can
it be regarded as drawn from a Normal population with mean 5.4?
Q.2.a A vector field is given by $\bar{F}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right) j$, prove that it is
irrotational and hence, find its scalar potential
b Following results were obtained from 2 samples each drawn from the different population A \& B.

Population	A	B
Sample size	21	17
Sample SD	45	40

Test the hypothesis that variance of A is less than or equal to variance of B
c
Show that the matrix $A=\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right] \quad$ is diagonalisable. Find the diagonal form D and the diagonalising matrix M
Q.3.a In a large institution 2.28% employees receive income below Rs. 4500 and 15.87% employees receive income above Rs. 7500 . Assuming the income to be normally distributed, find the mean and standard deviation?
b Using the method of Lagrange's multipliers, solve the following NLPP
Optimise $Z=12 x_{1}+8 x_{2}+6 x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-23$
Subject to $x_{1}+x_{2}+x_{3}=10$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

c Evaluate $\int_{c} \bar{F} . d \bar{r}$ where $\bar{F}=\operatorname{Cos} \mathrm{y} . \mathrm{i}-\mathrm{x} \operatorname{Sin} \mathrm{y} . \mathrm{j}$ and c is the curve $\mathrm{y}=$ $\sqrt{1-x^{2}}$ in the ry plane from $(1,0)$ to $(0,1)$
Q.4.a The height of 6 randomly chosen sailors are in inches: $63,65,68,69,71$,
72. The heights of 10 randomly chosen soldiers are: $61,62,65,66,69,69$, $70,71,72,73$. Discuss in the light that these data throw on the suggestion that the soldiers on an average are taller than the sailors.
b Obtain the rank correlation from the following data

X	40	42	45	35	36	39
Y	46	43	44	39	40	43

c If $\mathrm{A}=\left[\begin{array}{ll}\pi & \pi / 4 \\ 0 & \pi / 2\end{array}\right]$, find $\cos \mathrm{A}$
Q.5.a Out of 1000 families with 4 children each, how many would you expect to have
(1) 2 boys \& 2 girls (2) at least one boy (3) no girls (4) at most 2 girls
b In an experiment on immunization of cattle from TB , the following results were obtained.

	Affected	Not Affected	Total
Inoculated	267	27	294
Not Inoculated	757	155	912
Total	1024	182	1206

Use Chi-square test to determine the efficacy of vaccine in preventing TB
c Using Kuhn-Tucker conditions, solve the following NLPP
Maximize $Z=10 x_{1}+4 x_{2}-2 x_{1}{ }^{2}-x_{2}{ }^{2}$
Subject to $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 5$

$$
\begin{equation*}
\mathrm{X}_{1}, \mathrm{x}_{2} \geq 0 \tag{6}
\end{equation*}
$$

Q.6.a Using Green's theorem, evaluate $\oint_{c}\left(e^{x^{2}}-x y\right) d x-\left(y^{2}-a x\right) d y$ where c is the circle $x^{2}+y^{2}=a^{2}$
b Suppose that in a certain region, the daily rainfall (in inches) is a continuous random variable X with probability density function $f(x)$ is given by

$$
\begin{aligned}
f(x) & =\frac{3}{4}\left(2 x-x^{2}\right), 0 \leq x \leq 2 \\
& =0, \text { elsewhere }
\end{aligned}
$$

Find the probability that on a given day in this region, the rain fall is (1) not more than 1 inch (2) greater than 1.5 inches (3) between 0.5 and 1.5 inches
c Find the coefficient of regression and hence the equations of the lines of regression for the following data.

X	78	36	98	25	75	82	90	62	65	39
Y	84	51	91	60	68	62	86	58	53	47

Estimate the value of y when $\mathrm{x}=50$ and also estimate the value of x when $y=90$

