Paper / Subject Code: 39601 / Applied Mathematics-IV Doute - 4/12/19

S.E. (Mechanical) (Sem-IV) (CBSGS) (R-2012)

Duration: 3 hours

Total Marks: 80

N.B	 Q.1 is compulsory. Solve any three out of the remaining from Q.2 to Q.6. Figure to right indicate full marks Use of statistical table is allowed. 	
Q.1.a.	If λ is an Eigen value of a non-singular matrix A, prove that $\frac{ A }{\lambda}$ is an Eigen	(5)
b	Value of adj.A In a Poisson distribution, $P(x=3)$ is 2/3 of $P(x=4)$. Find the mean and the standard deviation	(5)
c	Find the angle between the normals to the surface x $y = z^2$, at the points $(1, 4, 2) & (-3, -3, 3)$	(5)
d	A random sample of 50 items given the mean 6.2 and variance 10.24. Can it be regarded as drawn from a Normal population with mean 5.4 ?	(5)
Q.2.a	A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$, prove that it is important and hence find its scalar potential	(6)
b	Following results were obtained from 2 samples each drawn from the different population A & B.	(6)
c	Sample size2117Sample SD4540Test the hypothesis that variance of A is less than or equal to variance of BShow that the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalisable. Find thediagonal form D and the diagonalising marix M	(8)
Q.3.a	In a large institution 2.28% employees receive income below Rs.4500 and 15.87% employees receive income above Rs.7500. Assuming the income to be normally distributed, find the mean and standard deviation?	(6)
b	Using the method of Lagrange's multipliers, solve the following NLPP Optimise $Z = 12 x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$ Subject to $x_1 + x_2 + x_3 = 10$ $X_1, x_2, x_3 \ge 0$	(6)
C	Evaluate $\int_c \bar{F}.d\bar{r}$ where $\bar{F} = \cos y.i - x \sin y.j$ and c is the curve $y = \sqrt{1 - x^2}$ in the xy plane from (1,0) to (0,1)	(8)
Q.4.a	The height of 6 randomly chosen sailors are in inches: 63, 65, 68, 69, 71, 72. The heights of 10 randomly chosen soldiers are: 61, 62, 65, 66, 69, 69, 70, 71, 72, 73. Discuss in the light that these data throw on the suggestion that the soldiers on an average are taller than the sailors.	(6)

Page 1 of 2

79103

0FEF08902C0543F1E6078AB44701FF69

Paper / Subject Code: 39601 / Applied Mathematics-IV

Obtain the rank correlation from the following data

	J 42	43	33	36	39
Y 4	5 43	44	39	40	43

If $A = \begin{bmatrix} \pi & \pi/4 \\ 0 & \pi/2 \end{bmatrix}$, find $\cos A$

b

С

- Out of 1000 families with 4 children each , how many would you expect to Q.5.a (6) have
 - (1) 2 boys & 2 girls (2) at least one boy (3) no girls (4) at most 2 girls

In an experiment on immunization of cattle from TB, the following results b (6) were obtained.

	Affected	Not	Total
		Affected	
Inoculated	267	27	294
Not Inoculated	757	155	912
Total	1024	182	1206

Use Chi-square test to determine the efficacy of vaccine in preventing TB Using Kuhn-Tucker conditions, solve the following NLPP с Maximize $Z = 10 x_1 + 4 x_2 - 2 x_1^2 - x_2^2$ Subject to $2x_1 + x_2 \le 5$

$$X_1, x_2 \ge 0$$

Q.6.a Using Green's theorem, evaluate $\oint_c (e^{x^2} - xy) dx - (y^2 - ax) dy$ where (6) c is the circle $x^2 + y^2 = a^2$ b

Suppose that in a certain region, the daily rainfall (in inches) is a continuous random variable X with probability density function f(x) is given by

$$f(x) = \frac{3}{4}(2x - x^2), 0 \le x \le 2$$

=0, elsewhere

Find the probability that on a given day in this region, the rain fall is (1) not more than 1 inch (2) greater than 1.5 inches (3) between 0.5 and 1.5 inches

Find the coefficient of regression and hence the equations of the lines of С (8) regression for the following data.

X	78	36	98	25	75	82	90	62	65	39
Y	84	51	91	60	68	62	86	58	53	47
Detailed with the second										

Estimate the value of y when x = 50 and also estimate the value of x when v = 90

79103

Page 2 of 2

0FEF08902C0543F1E6078AB44701FF69

(6)

(8)

(8)

(6)