Paper / Subject Code: 89023 / Finite Element Analysis
 (3 Hours)

Note:

1. Question 1 is Compulsory
2. Solve any three from remaining five
3. Figures to right indicate full marks
4. Assume suitable data if necessary
Q. 1 Attempt any four
a) Write element matrix equation in the following fields explaining each term:
i. 1D steady state, heat transfer by conduction
ii. Torsion Analysis
b) Prove that linear triangular element is CST element.
c) Explain different types of Boundary conditions with examples.
d) Explain plane stress and plane strain conditions with examples.
e) What do you mean by consistent mass matrix and lumped mass matrix. Give suitable mathematical expression?
Q. 2 a) Solve the following differential equation using Method of least square and Galerkin method.

$$
\frac{d^{2} y}{d x^{2}}-10 x^{2}=5 ; 0 \leq y \leq 1 ; y(0)=0, y(1)=0
$$

Compare answer with exact solution at $\mathrm{x}=0.5$
b) Find the displacement at nodes and stresses over each element.

PROPERTIES	STEEL (S)	ALUMINIUM (A)	BRASS (B)
	AREA, mm^{2}	200	370
E, N/ mm^{2}	2×10^{5}	7×10^{4}	870
Length, mm	1000	350	300

Paper / Subject Code: 89023 / Finite Element Analysis

Q. 3 a) A copper fin of diameter 2 cm , length 6 cm and thermal conductivity is $100 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and is exposed to ambient air at $30^{\circ} \mathrm{C}$ with a heat transfer coefficient $25 \mathrm{~W} / \mathrm{m}^{2}{ }^{0} \mathrm{C}$. If one end of the fin is maintained at temperature $500{ }^{\circ} \mathrm{C}$ and other end is at $200{ }^{\circ} \mathrm{C}$. Solve the following differential equation for obtaining the temperature distribution over the length of a fin.

$$
k A \cdot \frac{d^{2} \theta}{d x^{2}}-h p \theta=0
$$

$\theta=$ Temperature difference $=T x-T a$.
Use Rayleigh-Ritz method, mapped over general element, taking
Lagrange's linear shape functions and three linear elements.
Write all the steps clearly. Compare your answer with exact at $\mathrm{x}=2,4 \mathrm{~cm}$
b) For the iso parametric quadrilateral element shown in figure. Determine Cartesian coordinates of point P which has local coordinates $(\xi, \eta)=$ ($0.57735,0.57735$).

Q. 4 a) Compute the stress developed in the members of the truss shown in

68287
Q. 5 a) Evaluate the natural frequencies for the bar with varying cross sections Poisson's ratio for plate material are $70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and 0.3 respectively. Upon loading of the plate, the nodal deflections were found to be in x and y direction respectively as
$u_{1}=0.01 \mathrm{~mm}$ and $\mathrm{v}_{1}=-0.04 \mathrm{~mm}, \mathrm{u}_{2}=0.03 \mathrm{~mm}$ and $\mathrm{v}_{2}=0.02 \mathrm{~mm}, \mathrm{u}_{3}=-$ 0.02 mm and $\mathrm{v}_{3}=-0.04 \mathrm{~mm}$.

Determine :
i. The Jacobian for $(x, y)-(\xi, \eta)$ transformation
ii. The strain-displacement relation matrix
iii. The stress in plate

b) Explain Convergence criteria. What do you understand by $h \& p$ method of Finite Element Analysis?

