S.E. (Mechanical) (sem-IV) C CB)

Paper / Subject Code: 41205 / Kinematics of Machinery

03 Hrs

[Total Marks 80]

NeB.:

(1) Question No. 1 is compulsory
(2) Attempt any three questions out of remaining five questions
(3) Figures to right indicate full marks
(4) Assume suitable data if necessary.
(5) Notations carry usual meaning.
Q. 1 Attempt any four
A. What is Kutzback's criterion for degrees of freedom of plane mechanism? In what way is Gruebler's criterion different from it?.
B. Differentiate between lower pair and higher pair.
C. Define with respect to cam i) Base circle ii) pitch circle iii) trace point iv) pressure angle.
D. What is crowning of pulley in flat drives? What is its use.
E. Explain the self locking and self energizing in brakes.
Q.2A. The mechanism, as shown in Fig.1, has the dimensions of various links as follows: $A B$ $=\mathrm{DE}=150 \mathrm{~mm} ; \mathrm{BC}=\mathrm{CD}=450 \mathrm{~mm} ; \mathrm{EF}=375 \mathrm{~mm}$. The crank AB makes an angle of 45° with the horizontal and rotates about A in the clockwise direction at a uniform speed of $120 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The lever DC oscillates about the fixed point D , which is connected to $A B$ by the coupler BC. The block F moves in the horizontal guides, being driven by the link EF. Determine velocity of the block F and angular velocity of DC

1. By instantaneous centre method
2. By relative velocity method

Figure 1
B. State and prove law of gearing.
Q.3A. A pair of gears, having 40 and 20 teeth respectively, are rotating in mesh, the speed of the smaller being $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Determine the velocity of sliding between the gear teeth faces at the point of engagement, at the pitch point, and at the point of disengagement if the smaller gear is the driver. Assume that the gear teeth are 20° involute form, addendum length is 5 mm and the module is 5 mm . Also find the angle through which the pinion turns while any pairs of teeth are in contact.

Paper / Subject Code: $\mathbf{4 1 2 0 5}$ / Kinematics of Machinery

B. An open belt drive is required to transmit 10 KW of power from a motor running at 600 rpm . Diameter of the driving pulley is 250 mm . The speed of the driven pulley is 220 rpm . The belt is 12 mm thick and has a mass density of $0.001 \mathrm{~g} / \mathrm{mm}^{3}$. Safe stress in the belt is not to exceed $2.5 \mathrm{~N} / \mathrm{mm}^{2}$. The two shafts are 1.25 m apart. The coefficient of friction is 0.25 . Determine the width of the belt.
Q. 4 A. The mechanism as shown in fig. 2 of a radial valve gear. The crank OA turns uniformly at $150 \mathrm{r} . \mathrm{p} . \mathrm{m}$ and is pinned at A to $\operatorname{rod} \mathrm{AB}$. The point C in the rod is guided in the circular path with D as centre and DC as radius. The dimensions of various links are: $\mathrm{OA}=150$ $\mathrm{mm} ; \mathrm{AB}=550 \mathrm{~mm} ; \mathrm{AC}=450 \mathrm{~mm} ; \mathrm{DC}=500 \mathrm{~mm} ; \mathrm{BE}=350 \mathrm{~mm}$.
Determine velocity and acceleration of the ram E for the given position of the mechanism.

Figure 2
B. What is pantograph? Show that it can produce paths exactly similar to the ones traced out by a point on a link on an enlarged or reduced scale.
Q.5A. In a reverted epicyclic gear train, the arm A carries two gears B and C and a compound gear $\mathrm{D}-\mathrm{E}$. The gear B meshes with gear E and the gear C meshes with gear D . The number of teeth on gears B, C and D are 75,30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 r.p.m. clockwise
B. A sphere of radius 0.2 m starts rolling without slip up an inclined at an angle of 30° with the horizontal. If the initial velocity of sphere $10 \mathrm{rad} / \mathrm{s}$. Determine how far sphere will travel before it reverse its motion.
C. Explain chordal action in chain drive.

