Paper / Subject Code: 32205 / Elective - I Microlectronics

Date-31/5/19

(3 Hours)

[Total Marks: 80]

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary and mention the same in answer sheet.
 - 1. Attempt any four

(20)

(10)

- a) Compare constant voltage scaling and full voltage scaling.
- b) Compare single ended and differential power amplifiers.
- c) Why folded cascode is very popular building block in CMOS amplifier? Explain its advantages over double cascade.
- d) Derive output resistance of MOS current source.
- e) What are the advantages of active load?
- 2. a) Design an NMOS current source to provide a bias current of $I_Q = 100 \,\mu A$ and an output resistance greater than 20 M Ω . The reference current is to be $I_{ref} = 150 \,\mu A$. The circuit is to be biased at $\pm 3.3 \, V$ and the voltage at the drain of the current source transistor is to be no smaller than $-2.2 \, V$. The minimum width to length ratio of transistor is to be unity. (12)
 - b) Explain cascade current mirror in detail. (08)
- 3. a) For CS amplifier with current source load find intrinsic gain A_o and explain the effect of output resistance on gain.
 - b) For CS stage with resistive load amplifier prove that $Gain = -g_m r_d$. (06)
 - c) Compare double cascade with folded cascade. (04)
- 4. a) Explain PMOS fabrication process with suitable diagrams. (10)
 - b) Explain with proper diagram CLASS F power amplifier. (10)
- 5. a) Explain in detail fabrication of transformer. (10)
 - b) Explain short channel effects in MOSFET. (10)
- 6. a) Explain DC transfer characteristics of MOS differential amplifier. (10)
 - b) Calculate the DC characteristics of MOSFET differential amplifier shown in Fig. 6(b) the transistor parameters are $k_{n1}=k_{n2}=0.1\frac{\text{mA}}{\text{V}^2}$, $k_{n3}=k_{n4}=0.3\frac{\text{mA}}{\text{V}^2}$, and for all transistor
 - $\lambda = 0$ and $V_{tn} = 1$ V. Determine the maximum range of common–mode input voltage. (10)

Page 1 of 1