(3 Hours) Total Marks: 80

N.B: (1) Question No. 1 is compulsory

(2) Attempt any three questions out of the remaining five questions

Q.1 (a) Define ADT. Write ADT for Queue data structure. [05] (b) Find the in-order, pre-order, post-order traversal [05]

- (c) Differentiate between Linked list and Array [05]
- (d) Explain application of Binary tree [05]
- Q.2 (a) Apply Huffman coding for following examples. Determine the code for the following characters. "CONSTRUCTION"
 - (b) Consider a hash table with size = 10. Using Linear probing, insert the keys 28, 55, 71, 67, 11, 10, 90, 44 into the table.
- Q.3 (a) Write an C program to check the well-formedness of parenthesis in an algebraic expression using the Stack data structure.
 - (b) Construct AVL for the given elements 27,25,23,29,35,33,34 [10]
- Q.4 (a) Write a program to perform the following operations on the Doubly linked list: [10]
 - i. Insert a node at the end
 - ii. Delete a node from the beginning
 - iii. Search for a given element in the list
 - iv. Display the list
 - (b) Write DFS algorithm. Show DFS traversal for the following graph with all the steps. [10]

Paper / Subject Code: 50923 / Data Structure

Q.5	(a)	Define Data Structure. Explain its type with an example [10]
	(c)	Explain B tree. Draw the B-tree of order 3 created by inserting the [10]
	` /	following data arriving in sequence: 50, 25, 10, 5, 7, 3, 30, 20, 8, 15
Q.6	(a)	Draw the Stack structure in each case when the following operations are [10]
_		performed on an empty stack.
		i. PUSH A, B, C, D, E, F
		ii. POP two letters
		iii. PUSH G
		iv. POPH
		v. POP four letters
		vi. PUSH I, J
		vii. POP one letter
	(b)	Write a C program for polynomial addition using a Linked-list. [10]
	(0)	The a c program for porynomial addition using a Elinked-list.
